Интервал между событиями. В теории относительности вводят понятие события, которое определяется местом, где оно произошло, и временем
В теории относительности вводят понятие события, которое определяется местом, где оно произошло, и временем, когда оно произошло. Событие можно изобразить точкой в воображаемом четырехмерном пространстве, на осях которого три пространственные координаты и время. Эти точки называются мировыми точками. Всякой частице соответствует некоторая линия (мировая линия).
В классической физике при переходе от одной системы координат к другой координаты точек изменяются, но неизменным остается расстояние между двумя выбранными точками Dl, которое можно определить из формулы Dl2 = (x2 - x1 )2 + (y2 -y1)2 + (z2 - z1 )2, где x1 , y1 , z1 , x2 , y2 , z2 - координаты точек. В теории относительности при переходе от одной системы к другой расстояние между точками не остается постоянным, т.е. не является инвариантом. Инвариантом, не зависящим от выбранной системы координат, является интервал между событиями Ds, который определяется по формуле Ds2 = c2t2 - Dl2 . С формальной математической точки зрения интервал можно рассматривать как расстояние между мировыми точками в воображаемом четырехмерном пространстве.
Если Ds2 > 0, то интервал называют времениподобным,и существует такая система отсчета. в которой оба события произошли в одной точке. Два события могут быть причинно связаны друг с другом только в том случае, если интервал между ними времениподобный.
Если Ds2 < 0, то интервал называют пространственноподобным,и сущес-твует такая система отсчета, в которой оба события произошли в одно и тоже время.
Теория относительности сформулировала новое представление о пространстве и времени, показав, что пространство и время органически связаны между собой и образуют единую форму существования материи. Дальнейшее развитие теории относительности (общая теория относительности) показало, что свойства пространства-времени определяются действующими в данной области полями тяготения, и изменяются в зависимости от концентрации в пространстве массы вещества.
ЛЕКЦИЯ 10 |
Дата добавления: 2015-08-08; просмотров: 579;