Вывод преобразований Лоренца

Для вывода преобразований Лоренца рассмотрим в двух системах отсчета мысленный опыт. Одна система К - неподвижна, другая К' движется вдоль оси х со скоростью V. Пусть в момент времени t = t' = 0, когда начала систем координат совпадали, в этом начале произошла вспышка света и стала распространяться сферическая световая волна. В соответствии с постулатом I фронт этой волны будет сферой в обеих системах отсчета, сфера эта будет, в соответствии с постулатом II, увеличивать свой радиус со скоростью света и в той, и в другой системе отсчета.

Опираясь на эти требования, найдем вид правильных преобразований координат и времени. В качестве пробного возьмем преобразование Галилея, а затем его подправим.
Фронт световой волны в системе К - это сфера радиуса ct:

x2 + y2 + z2 = c2t2:

В системе К' уравнение фронта этой волны, в соответствии с постулатами I и II

(x')2+(y')2+(z')2=c2 (t')2,

пробуем преобразования Галилея, переходим в К:

(x')2 = (x - Vt)2,

(y')2 = y2,

(z')2 = z2,

(t')2 = t2,

отсюда следует:

x2 - 2Vxt + V2t2 + y2 + z2 = c2t2,

сравните с

(x')2+(y')2+(z')2 = c2(t')2.

Появились ЛИШНИЕ ЧЛЕНЫ, надо так изменить преобразования, чтобы они исчезли.
Пробуем преобразования:

x' = x- Vt, y'=y, z'=z, t'=t-αx

x2 - 2Vxt + V2t2 + y2 + z2 = c2t2 - 2c2αxt + c2α2x2

приравниваем подчеркнутые члены, получаем:

При таком α остается:

Перегруппируем члены:

Подправим преобразование так, чтобы исчезли выражения в скобках, для этого возьмем

Такие преобразования сохраняют вид уравнения фронта световой волны, сфера преобразуется в сферу, в соответствии с постулатами С.Т.О.

Обозначим, для удобства записи,

тогда преобразования Лоренца запишутся так:

а) прямые   б) обратные
;   ;
;   ;
;   ;
;   .

 

Релятивистская механика должна быть построена таким образом, чтобы уравнения движения не менялись при переходе из одной инерциальной системы отсчета в другую, т.е. были инвариантны относительно преобразований Лоренца.

 








Дата добавления: 2015-08-08; просмотров: 1118;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.