Волновая функция и ее статистический смысл

 

Какова физическая природа волн де Бройля? Для выяснения этой проблемы сравним дифракцию световых волн и микрочастиц.

Дифракционная картина, наблюдаемая для световых волн, характеризуется тем, что в результате наложения дифрагирующих волн друг на друга в различных точках пространства происходит усиление или ослабление амплитуды колебаний. Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц, рассеянных или отраженных по различным направлениям,— в одних направлениях наблюдается большее число частиц, чем в других.

Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля.

С другой стороны, интенсивность волн де Бройля оказывается больше там, где имеется большее число частиц, т. е. интенсивность волн де Бройля в данной точке пространства определяет число частиц, попавших в эту точку. Таким образом, дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории.

Немецкий физик М. Борн (1882-1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятностии обозначаемая Ψ (х, у, z, t). Эту величину называют также волновой функцией(или Ψ-функцией).Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

W ~ | Ψ (x, y, z, t) | 2 (1)

(|Ψ|2 = ΨΨ*, Ψ* — функция, комплексно сопряженная с Ψ). Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер:квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени t в области с координатами х и х + dх, у и у + dу, z и z + dz.

Волновая функция является основным носителем информации о корпускулярных и волновых свойствах микрочастицы. Вероятность нахождения частицы в элементе объемом dV равна

dW = |Ψ|2 dV. (2)








Дата добавления: 2015-08-08; просмотров: 894;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.