Интерпретация моделей с распределенным лагом

Эконометрическое моделирование охарактеризованных вы­ше процессов осуществляется с применением моделей, содержа­щих не только текущие, но и лаговые значения факторных пере­менных. Эти модели называются моделями с распределенным лагом.Модель вида является примером модели с распределенным лагом.

Эта модель говорит о том, что если в некоторый момент вре­мени t происходит изменение независимой переменной xt то это изменение будет влиять на значения переменной у в течение l следующих моментов времени.

Коэффициент регрессии b0 при переменной xt характеризует среднее абсолютное изменение yt при изменении xt на 1 ед. свое­го измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора х. Этот коэффици­ент называют краткосрочным мультипликатором.

Вмомент (t + 1) совокупное воздействие факторной перемен­ной xt на результату, составит (bо + b1) усл. ед., в момент (t+2) это воздействие можно охарактеризовать суммой (bо + b1 + b2) и т. д. Полученные таким образом суммы называют промежуточными мультипликаторами.

С учетом конечной величины лага можно сказать, что изме­нение переменной xt в момент t на 1 усл. ед. приведет к общему изменению результата через / моментов времени на(bо + b1 +...+bl) абсолютных единиц.

Введем следующее обозначение:

bо + b1+...+ bl = b

Величину b называют долгосрочным мультипликатором.Он по­казывает абсолютное изменение в долгосрочном периоде t + l ре­зультата у под влиянием изменения на 1 ед. фактора х.

Предположим

βj = bj/b,j = O:l.)

Назовем полученные величины относительными коэффициен­тамимодели с распределенным лагом. Если все коэффициенты bj имеют одинаковые знаки, то для любого j

О < βj; < 1 и

В этом случае относительные коэффициенты βj являются ве­сами для соответствующих коэффициентов bj. Каждый из них из­меряет долю общего изменения результативного признака в мо­мент времени (t+j).

Зная величины βj, с помощью стандартных формул можно определить еще две важные характеристики модели множествен­ной регрессии: величину среднего лага и медианного лага. Сред­ний лагопределяется по формуле средней арифметической взве­шенной:

и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании резуль­тата на изменение фактора, тогда как высокое его значение гово­рит о том, что воздействие фактора на результат будет сказывать­ся в течение длительного периода времени. Медианный лаг— это величина лага, для которого

Это тот период времени, в течение которого с момента време­ни t будет реализована половина общего воздействия фактора на результат.








Дата добавления: 2015-08-01; просмотров: 920;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.