Метод отклонений от тренда
Пусть имеются два временных ряда xt и уt каждый из которых содержит трендовую компоненту Τ и случайную компоненту ε. Проведение аналитического выравнивания по каждому из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни и соответственно. Эти расчетные значения можно принять за оценку трендовой компоненты T каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели. Дальнейший анализ взаимосвязи рядов проводят с использованием не исходных уровней, а отклонений от тренда и при условии, что последние не содержат тенденции.
Содержательная интерпретация параметров полученной модели затруднительна, однако ее можно использовать для прогнозирования. Для этого необходимо определить трендовое значение факторного признака и с помощью одного из методов оценить величину предполагаемого отклонения фактического значения от трендового. Далее по уравнению тренда для результативного признака определяют трендовое значение , а по уравнению регрессии по отклонениям от трендов находят величину отклонения . Затем находят точечный прогноз фактического значения yt по формуле
Дата добавления: 2015-08-01; просмотров: 957;