Теоремы свертки и запаздывания.

Лекция 6.

 

Теорема. (теорема запаздывания) Если f(t) = 0 при t < 0, то справедлива формула

где t0 – некоторая точка.

 

 

Определение. Выражение называется сверткойфункций f1(t) и f2(t) и обозначается f1* f2.

 

Теорема. (теорема свертки) Преобразование Лапласа от свертки равно произведению преобразований Лапласа от функций f1(t) и f2(t) .

 

Теорема. (Интеграл Дюамеля (Дюамель (1797 – 1872) – французский математик)). Если , то верно равенство

 

Для нахождения изображений различных функций наряду с непосредственным интегрированием применяются приведенные выще теоремы и свойства.

 

Пример. Найти изображение функции .

Из таблицы изображений получаем: .

По свойству интегрирования изображения получаем:

 

Пример. Найти изображение функции .

 

Из тригонометрии известна формула .

Тогда = .

 

 

Операционное исчисление используется как для нахождения значений интегралов, так и для решение дифференциальных уравнений.

 

Пусть дано линейное дифференциальное уравнение с постоянными коэффициентами.

 

Требуется найти решение этого дифференциального уравнения, удовлетворяющее начальным условиям:

 

Если функция x(t) является решением этого дифференциального уравнения, то оно обращает исходное уравнение в тождество, значит функция, стоящая в левой части уравнения и функция f(t) имеет (по теореме единственности) одно и то же изображение Лапласа.

Из теоремы о дифференцировании оригинала { } можно сделать вывод, что

 

Тогда

Обозначим

 

Получаем:

 

Это уравнение называется вспомогательным (изображающим)илиоператорным уравнением.

Отсюда получаем изображение , а по нему и искомую функцию x(t).

Изображение получаем в виде:

 

Где

 

Этот многочлен зависит от начальных условий. Если эти условия нулевые, то многочлен равен нулю, и формула принимает вид:

Рассмотрим применение этого метода на примерах.

 

 

Пример. Решить уравнение

 

Изображение искомой функции будем искать в виде:

Находим оригинал, т.е. искомую функцию:

 

Пример. Решить уравнение

 

 

Пример. Решить уравнение:

 

 

Изображение искомой функции

Для нахождения оригинала необходимо разложить полученную дробь на элементарные дроби. Воспользуемся делением многочленов (знаменатель делится без остатка на p – 1):

p3 – 6p2 + 11p – 6 p - 1

p3 – p2 p2 – 5p + 6

-5p2 + 11p

-5p2 + 5p

6p - 6

6p - 6

 

В свою очередь

Получаем:

 

Тогда:

Определим коэффициенты А, В и С.

 

 

Тогда

 

 

Приемы операционного исчисления можно также использовать для решения систем дифференциальных уравнений.

 

Пример. Решить систему уравнений:

 

Обозначим - изображения искомых функций и решим вспомогательные уравнения:

 

Решим полученную систему алгебраических уравнений.

 

 

 

 

Если применить к полученным результатам формулы

то ответ можно представить в виде:

 

Как видно, гиперболические функции в ответе могут быть легко заменены на показательные.

 

Пример. Решить систему уравнений

при x(0) = y(0) = 1

 

Составим систему вспомогательных уравнений:

 

 

 

 

 

Если обозначить то из полученного частного решения системы можно записать и общее решение:

 

При рассмотрении нормальных систем дифференциальных уравнений этот пример был решен традиционным способом Как видно, результаты совпадают.

 

Отметим, что операторный способ решения систем дифференциальных уравнений применим к системам порядка выше первого, что очень важно, т.к. в этом случае применение других способов крайне затруднительно.

 

 


<== предыдущая лекция | следующая лекция ==>
Свойства изображений. | Определение. Дополнительным к событию А называется событие , означающее, что событие А не происходит.




Дата добавления: 2015-08-01; просмотров: 1480;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.032 сек.