Критерий совместности Кронекера-Капелли
Система линейных уравнений имеет вид:
(5.1)
Здесь и ‑ заданные, а ‑ неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:
AX =B, (5.2)
где - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X= (x1, x2,..., xn)T, B = (b1, b2,..., bm)T - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.
Упорядоченная совокупность n вещественных чисел (c1, c2,..., cn) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2,..., xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2,..., cn)T такой, что AC º B.
Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.
Матрица
,
образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.
Вопрос о совместности системы (5.1) решается следующей теоремой.
Теорема Кронекера-Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и совпадают, т.е. .
Для множества М решений системы (5.1) имеются три возможности:
1) M = Æ (в этом случае система несовместна);
2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной);
3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (5.1) имеет бесчисленное множество решений.
Система имеет единственное решение только в том случае, когда
. При этом число уравнений - не меньше числа неизвестных ; если , то уравнений являются следствиями остальных. Если , то система является неопределенной.
Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:
(5.3)
Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера; 3) матричным методом.
Пример 2.12. Исследовать систему уравнений и решить ее, если она совместна:
Решение. Выписываем расширенную матрицу системы:
.
Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу ; содержащие его миноры третьего порядка равны нулю:
, .
Следовательно, ранг основной матрицы системы равен 2, т.е. . Для вычисления ранга расширенной матрицы `рассмотрим окаймляющий минор
,
значит, ранг расширенной матрицы . Поскольку , то система несовместна.
Дата добавления: 2015-07-30; просмотров: 448;