Апериодическое звено

При k = 1 получаем следующие выражения ЧХ:
W(p) =
;
;
;
;
(
) =
1 -
2 = - arctg(
T);
;
L(
) = 20lg(A(
)) = - 10lg(1 + (
T)2).
Здесь A1 и A2 - амплитуды числителя и знаменателя ЛФЧХ;
1 и
2 - аргументы числителя и знаменателя. ЛФЧХ:
ЧХ показаны на рис.52. АФЧХ есть полуокружность радиусом 1/2 с центром в точке P = 1/2. При построении асимптотической ЛАЧХ считают, что при
<
1 = 1/T можно пренебречь (
T)2 выражении для L(
), то есть L(
)
- 10lg1 = 0.. При
>
1 пренебрегают единицей в выражении в скобках, то есть L(w)
- 20lg(wT). Поэтому ЛАЧХ проходит вдоль оси абсцисс до сопрягающей частоты, затем - под наклоном - 20 дб/дек. Частота w1 называется сопрягающей частотой. Максимальное отличие реальных ЛАЧХ от асимптотических не превышает 3 дб при
=
1.
ЛФЧХ асимптотически стремится к нулю при уменьшении w до нуля (чем меньше частота, тем меньше искажения сигнала по фазе) и к -
/2 при возрастании
до бесконечности. Перегиб в точке
=
1 при
(
) = -
/4. ЛФЧХ всех апериодических звеньев имеют одинаковую форму и могут быть построены по типовой кривой с параллельным сдвигом вдоль оси частот.
Дата добавления: 2015-07-24; просмотров: 943;
