Свободные оси

Тело может вращаться не только вокруг закрепленной оси, но и вокруг оси, которая не закреплена. В любом теле можно выбрать такие оси, направление которых при вращении вокруг них будет сохраняться без каких либо специальных устройств (например, подшипников). Такие оси называют свободными.

Свободные оси — оси, которые без специального закрепления сохраняют свое направление в пространстве.

Пример: ось вращения Земли и волчка, ось всякого брошенного и свободно вращающегося тела.

Очевидно, что для однородных тел свободной осью является ось полной геометрической симметрии. Можно доказать, что в любом теле имеется не менее трех взаимно перпендикулярных свободных осей вращения, эти оси называются главными осями инерции. При этом оказывается, что при отсутствии внешних воздействий ус­тойчивым является вращение тела только вокруг двух осей, отно­сительно которых оно имеет наибольший или наименьший момент инерции. Например, если, подбросив тело, привести его во вращение


относительно произвольной оси, то, падая, оно само по себе перей­дет к вращению вокруг оси, которой соответствует или наибольший, или наименьший момент инерции. В некоторых случаях, когда тело вращается около свободной оси с малым моментом инерции, оно са­мопроизвольно изменяет эту ось на ось с наибольшим моментом. На рис. 7.8 показана иллюстрация этого явления.

К электродвигателю подвешено на нити цилиндрическое тело, которое может вращаться вокруг своей вертикальной геометричес­кой оси (а) с моментом инерции </, =——. При достаточно боль-шой угловой скорости тело изменит свое положение (б). Момент

1-2

инерции относительно новой оси равен J2 =—тг- • Если L2 > б/?2, то

/2 > /,. Вращение вокруг новой оси будет устойчивым.

Вращение человека в свободном полете и при различных прыж­ках происходит вокруг главной оси с наибольшим или наименьшим моментом инерции. Так как положение центра масс зависит от позы, то при различных позах направления главных осей будут различны.

У человека из-за наличия многозвенных, большей частью от­крытых в ходе движения кинематических цепей, имеется большое число степеней свободы. Так, подвижность кончиков пальцев от­носительно грудной клетки определяется 12 степенями свободы;


 



сил тяжести. Для этого разобьем тело на множество маленьких ку­сочков и нарисуем действующие на них силы тяжести (рис. 7.10).

запястья относительно лопатки — 7; а общее число степеней сво­боды всего тела — трехзначное число.

Пример

На рис. 7.9. представлена упрощенная модель скелета руки. Ки­нематическая схема показывает подвижные звенья скелета и типы шарнирных соединений (два шаровых шарнира и один цилинд­рический). Эта модель имеет семь степеней свободы: три степени свободы в плечевом поясе, одна степень свободы в локтевом суста­ве и три степени свободы у кисти. На динамической схеме стрелками показаны оси вращения, соответствующие этим степе­ням свободы.








Дата добавления: 2015-07-24; просмотров: 1007;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.