Собственная проводимость полупроводников
Полупроводниками являются твердые тела, которые при Т=0 характеризуются
полностью занятой электронами валентной зоной, отделенной от зоны проводимости сравнительно узкой (DW порядка 1 эВ) запрещенной зоной. Своим названием они обязаны тому, что их электропроводность меньше электропроводности металлов и больше электропроводности диэлектриков.
В природе полупроводники существуют в виде элементов (элементы IV, V и VI групп Периодической системы элементов Менделеева), например Si, Ge, As, Se, Те, и химических соединений, например оксиды, сульфиды, селениды, сплавы элементов различных трупп. Различают собственныеи примесные полупроводники. Собственными полупроводникамиявляются химически чистые полупроводники, а их проводимость называется собственной проводимостью.Примером собственных полупроводников могут служить химически чистые Ge, Se, а также многие химические соединения: InSb, GaAs, CdS и др.
При 0 К и отсутствии других внешних факторов собственные полупроводники ведут себя как диэлектрики. При повышении же температуры электроны с верхних уровней валентной зоны I могут быть переброшены на нижние уровни зоны проводимости II (рисунок 89). При наложении на кристалл электрического поля они перемещаются против поля и создают электрический ток. Таким образом, зона II из-за ее частичного «укомплектования» электронами становится зоной проводимости. Проводимость собственных полупроводников, обусловленная электронами, называется электронной проводимостьюили проводимостью n-типа(от лат. negative — отрицательный).
В результате тепловых забросов электронов из валентной зоны I зону проводимости II в валентной зоне возникают вакантные состояния, получившие название дырок. Во внешнем электрическом поле на освободившееся от электрона место — дырку — может переместиться электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т. д. Такой процесс заполнения дырок электронами равносилен перемещению дырки в направлении, противоположном движению электрона. Это равносильно тому, как если бы дырка обладала положительным зарядом, равным по величине заряду электрона. Проводимость собственных полупроводников, обусловленная квазичастицами — дырками, называется дырочной проводимостью или проводимостью р-типа (от лат. positive — положительный).
Таким образом, в собственных полупроводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне, так как последние соответствуют электронам, возбужденным в зону проводимости. Следовательно, если концентрации электронов проводимости и дырок обозначить соответственно пе и пр, то
где DЕ0 – энергия активации собственной проводимости, k – постоянная Больцмана. С повышением температуры растет число электронов, которые вследствие теплового возбуждения переходят из валентной зоны в зону проводимости и участвуют в электропроводности. Удельная электропроводность полупроводников возрастает с повышением температуры по закону . Удельное сопротивление полупроводников резко уменьшается с повышением температуры по закону
.
Проводимость полупроводников всегда является возбужденной, т. е. появляется только под действием внешних факторов (температуры, облучения, сильных электрических полей и т. д.). В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны (рисунок 90). Действительно, для переброса электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны DЕ0. При появлении же электрона в зоне проводимости в валентной зоне обязательно возникает дырка. Следовательно, энергия, затраченная на образование пары носителей тока, должна делиться на две равные части. Так как энергия, соответствующая половине ширины запрещенной зоны, идет на переброс электрона и такая же энергия затрачивается на образование дырки, то начало отсчета для каждого из этих процессов должно находиться в середине запрещенной зоны. Энергия Ферми в собственном полупроводнике представляет собой энергию, от которой происходит отсчет энергии возбуждения электронов и дырок
Количество электронов, переброшенных в зону проводимости, а следовательно, количество образовавшихся дырок, пропорциональны áN(E)ñ. Таким образом, проводимость собственных полупроводников
где g0 — постоянная, характерная для данного полупроводника.
Увеличение проводимости полупроводников с повышением температуры является их характерной особенностью (у металлов с повышением температуры проводимость уменьшается). С точки зрения зонной теории это обстоятельство объяснить просто: с повышением температуры растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости и участвуют в проводимости. Поэтому удельная проводимость собственных полупроводников с повышением температуры растет.
Дата добавления: 2015-07-18; просмотров: 928;