Диференціальні рівняння рівноваги рідини

 

Виділимо в нерухомій рідині нескінченно малий об’єм у вигляді паралелепіпеда з ребрами dx, dy, dz (рис 2.3). Подумки відкинемо рідину, що оточує паралелепіпед, і замінимо її дію відповідними силами. Припустимо, що на ліву грань діє тиск р. Тоді на праву грань А1В1С1D1, яка знаходиться на відстанні x+dx, буде діяти тиск .

Відповідно, сила тиску на ліву грань АВСD буде дорівнювати

,  

а на праву

 

 

(

Рис.2.3

 

Знак (-) показує, що сила діє у від’ємному напрямі осі х)

Крім сили тиску на паралелепіпед може діяти рівнодіюча масових сил (тяжіння, відцентрова, інерції), проекція якої на вісь х буде:

 

,  

 

де Х-проекція прискорення (одиничної масової сили) на вісь х;

dV-об’єм паралелепіпеда.

Рівняння рівноваги сил, що діють на паралелепіпед в напрямі осі х, має вигляд:

 

 

 

чи, після спрощень,

 

 
   

 

Аналогічно можна отримати рівняння рівноваги сил відносно осей y і z

Таким чином, кінцево маємо систему:

 

(2.5)

 

Рівняння (2.5) є основними диференціальними рівняннями рівноваги рідини (рівняння Ейлера).

Щоб привести рівняння Ейлера до вигляду, зручного для інтегрування, помножимо кожне з рівнянь (2.5) відповідно на dx, dy, dz і складемо їх почленно:

 

 

 

Ліва частина цього рівняння є повним диференціалом тиску dp, тому:

 

(2.6)

 

Рівняння (2.6) називається основним диференціальним рівнянням гідростатики.

Зі співвідношення (2.6) можна отримати рівняння для поверхні рівного тиску (поверхні рівня). Для такої поверхні p=const і при r=const будемо мати:

 

(2.7)

 

Частинним випадком поверхні рівня є вільна поверхня рідини.

Поверхні рівня мають такі властивості:

1) дві різні поверхні рівня не можуть перерізати одна одну;

2) зовнішні об’ємні сили напрямленні по нормалі до поверхні рівня.








Дата добавления: 2015-08-26; просмотров: 846;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.