Моменты инерции сечений

 

К геометрическим характеристикам плоских сечений относятся также моменты инерции. Различают осевые, полярные и центробежные моменты сечений.

Осевым моментом инерции сечения называется взятая по всему сечению сумма произведений элементарных площадок на квадраты их расстояний до некоторой оси, лежащей в плоскости рассматриваемого сечения. Так, относительно осей у и z (рис. 4.1) осевые моменты инерции определяются интегралами вида:

; . (4.6)

Величина осевого момента инерции служит характеристикой способности балки сопротивляться деформации изгиба.

Полярным моментом инерции сечения называется взятая по всему сечению сумма произведений элементарных площадок на квадраты их расстояний до некоторой точки О сечения (рис. 4.1):

, (4.7)

где r – расстояние от площадки до полюса.

Полярный момент инерции характеризует способность сечения сопротивляться деформации кручения.

Центробежным моментом инерции сечения относительно осей Оу и Оz называется взятая по всему сечению сумма произведений элементарных площадок на расстояния их до этих осей. Центробежный момент инерции сечения определяются интегралом

. (4.8)

Если полярный момент инерции вычисляется относительно начала системы координат (рис. 4.1), то и

+ ,

следовательно,

, (4.9)

т.е. сумма осевых моментов инерции сечения относительно любых двух взаимно перпендикулярных осей, проходящих через данную точку, равна полярному моменту инерции этого сечения относительно этой точки.

  Рис. 4.2

 

y1
y2
z1
z2
y
z
dA1
dA2
Размерность моментов инерции м4. Осевые и полярные моменты инерции всегда положительны, центробежный момент инерции может быть положительным, отрицательным, равным нулю.

Центробежный момент инерции сечения относительно осей, хотя бы одна из которых является осью симметрии, равен нулю. Действительно для симметричной фигуры всегда можно выделить два элемента ее площади (рис. 4.2), которые имеют одинаковые ординаты у12=у, и равные по величине, но противоположные по знаку абсциссы z1=z и z2=–z. Тогда

.

 








Дата добавления: 2015-08-21; просмотров: 818;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.