Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов
Энергетический обмен в организме человека связан с процессами анаболизма, катаболизма и функциональным метаболизмом. Количественно энергетический обмен измеряют в единицах работы (ккал) и мощности (ккал/час). Используются также кгм и кгм/мин. Однако в настоящее время принято пользоваться международной системой единиц (СИ). Здесь работа измеряется в джоулях (Дж), а мощность в ваттах (Вт) (1 ккал = 4187 Дж, 1 кДж = 0,28 Вт =0,239 ккал/час).
Функциональный метаболизм спортсмена связан с выполнением механической работы и затратами метаболической энергии. Поэтому при делении внешней механической мощности на метаболические затраты получается оценка коэффициента полезного действия. При педалировании на велоэргометре коэффициент полезного действия составляет 22-24%, а при вращении рукоятки — 20- 21%.
Энергообеспечение зависит от мощности (интенсивности) выполняемой работы. Максимальная мощность связана с затратами энергии молекул АТФ и КрФ, и длительность этой ра-
55
боты не превышает 15-30 с. Если заданная мощность может поддерживаться 30-60 с, то говорят о преимущественной доле анаэробного гликолиза в энергообеспечении мышечной деятельности. Когда работа продолжается без снижения мощности более 1 мин, то говорят о преимущественном вкладе в энергообеспечение аэробного гликолиза или окисления жиров. В связи с этим Н.И. Волков (1990) предложил каждый механизм энергообеспечения характеризовать мощностью, эффективностью и емкостью.
Предложенный еще в 1955г. Р-О. Астрандом способ оценки работоспособности спортсменов и представленный в России Н.И. Волковым (1969) и И.В. Ауликом(1990) явно устарел, поскольку модель, которой они пользовались, была очень простой. Старая модель не учитывает современных достижений физиологии человека, в частности: строения мышц, правила рекрутирования мышечных волокон и многого другого.
Устаревший вариант интерпретации метаболических процессов в организме человека представляется следующим образом. Алактатный механизм оценивается максимальной алактатной мощностью (мощность спринта длительностью 3-5 с), эффективность — коэффициентом полезного действия (КПД), емкость — запасами АТФ и КрФ. Здесь следует заметить, что эффективность алактатного механизма энергообеспечения зависит от активности работы ферментов — миози-новой АТФ-азы и КрФ-азы, деятельность которых зависит от температуры, степени закисления мышечного волокна. КПД зависит также от техники (Селуянов В.П., Савельев И.А., 1982), например, при педалировании с темпом более 150 об/мин у велосипедистов КПД может доходить до 37%, а у спортсменов, которые подпрыгивают на седле, КПД может снизиться до 10% (почти вся энергия будет тратиться на подъем туловища). В связи с этим точно оценить эффективность алактатного механизма невозможно. Емкость алактатного механизма, как правило, также оценить невозможно, поскольку все спортсмены достигают максимума мощности к 3-5 с, а затем мощность неизменно снижается. Методом биопсии было установлено (см. обзоры Норре1ег П., 1986; Кагlsson J., 1971, 1981, 1982 ), что у всех людей и спортсменов концентрации АТФ и КрФ примерно одинаковые, и
только временно можно увеличить запасы КрФ в мышечных волокнах на 10-30% с помощью приема за 30-40 мин до начала тестирования пищевой добавки — Креатинфосфат моногидрат. Через несколько часов концентрация КрФ в мышцах нормализуется (Rossiter Н. еt а1. 1996).
Мощность механизма анаэробного гликолиза предложено оценивать с помощью упражнения, в котором предельная продолжительность равна 30-60 с. Например, Вингейтский тест, длительность которого 30 с. В этом случае также можно дать иную интерпретацию, поскольку в 70-е годы не могли корректно оценивать вклад анаэробного гликолиза в метаболические затраты испытуемого при выполнении работы с околомаксимальной мощностью. Емкость анаэробного гликолиза оценивалась по величине кислорода, который был потреблен после выполнения требуемого тестового здания. Поскольку потребление кислорода приходило в норму после часа восстановления, то все избыточное потребление кислорода относят к алактатному и анаэробному гликолитическому долгу. В этом случае лактацидный долг оценивался в величину 16-20 л запроса кислорода. Эти оценки противоречат величинам кислородного запроса. Например, МАМ = 900 Вт, а мощность в Вингейтском тесте составляет 80% от МАМ или 750 Вт., Если КПД=23%, то 75 Вт соответствует 1 л/мин потребления кислорода. Следовательно, за 30 сек. человек должен был потребить 5 л кислорода — это кислородный запрос, он значительно меньше величины потребления кислорода во время восстановления. Этот факт был обнаружен итальянским ученым Р. Маргариа еще в 70-е годы. Именно он стал утверждать, что емкость анаэробного механизма не может превышать более 4-5 л кислородного эквивалента. В представленном случае кислородный запрос обеспечивается энергией молекул АТФ и КрФ на 2 л, потреблением кислорода за время работы 1,8л, тогда на анаэробный гликолиз остается только 1,2 л. Заметим, что в случае наличии 100% окислительных мышечных волокон в активных мышцах анаэробного гликолиза вообще может не наблюдаться. следовательно, упражнения с предельной продолжительностью 30-60 с позволяют оценить скорее уровень аэробной подготовленности мышц, поскольку в случае повышения аэробных возможностей мышц они меньше закисляются,
при прочих равных условиях происходит рост средней мощности в данном задании, за счет поддержания мощности до конца задания (30 или 60 с).
Аэробные возможности оценивают по мощности или величине максимального потребления кислорода. Этот показатель с 80-х годов подвергается серьезной критике, поскольку на выборке спортсменов высокой квалификации практически теряет информативность. Потребление кислорода, мощность на уровне анаэробного порога являются более надежными и информативными показателями, поскольку позволяют с высокой точностью предсказывать спортивные достижения в циклических видах спорта. Эффективность аэробного механизма или КПД при работе на велоэргометре равен 23-24% и не меняется, поэтому определение этого показателя такая же бессмыслица, как и во всех других случаях. Емкость аэробного механизма связана с запасами в мышцах гликогена и капелек жира. Запаса этих веществ у обычных людей хватает на 45-60 мин, а у спортсменов запасов может хватить на 1,5-3 часа (Физиология мышечной деятельности, 1982). Причем при регулярном приеме углеводов по ходу выполнения упражнения продолжительность упражнения многократно возрастает, как, например, у лыжников или велосипедистов (Алиханова Л.И., 1983). Следовательно, в спорте определение емкости не имеет никакого смысла с точки зрения успешности выступления спортсмена в соревнованиях, длительность которого не превышает 30 мин.
Таким образом, определение у спортсмена мощности, эффективности и емкости биоэнергетических механизмов по методике Н.И. Волкова не учитывает физиологические особенности реакции организма на выполняемую физическую работу. Например, невозможность перехода молекул АТФ или КрФ из одного мышечного волокна в другое, или из одной мышцы в другую. Поэтому при выполнении упражнений с использованием локальных мышечных групп, например руками, оценки мощности, эффективности и емкости будут иными. Однако проблема локальной работоспособности у биоэнергетиков пока не нашла интереса.
Дата добавления: 2015-08-21; просмотров: 3237;