Кинетостатический расчет четырехшарнирного механизма (метод проекций или аналитический).

Изобразим расчетную схему механизма и нанесем на нее все внешние силы и моменты (рис.4.12).

Рис. 4.12

Постановка задачи.
Дано: >li, j3, w3, e3, mi, Isi, Mc5.
Определить:Fij, Mд3.

1. Определение подвижности механизма, числа избыточных связей в КП и числа неизвестных в силовом расчете.

2. Определение скоростей и ускорений звеньев и центров их масс.

3. Определение главных векторов и главных моментов сил инерции.

4. Кинетостатический расчет механизма.

4.1 Звено 5 (рис. 4.13).
Уравнения силового равновесия в проекциях на оси координат

 


и сумма моментов сил относительно точки L

 

Рис. 4.13

4.2 Звено 4. (рис. 4.13).
Уравнения силового равновесия в проекциях на оси координат


и сумма моментов сил относительно точки Q

4.3 Звено 4. (рис. 4.14).

Рис. 4.14

Уравнения силового равновесия в проекциях на оси координат


и сумма моментов сил относительно точки C

Таким образом мы составили систему 9-и уравнение с 9-ю неизвестными. При составлении этой системы были учтены равенства действия и противодействия Fij = - Fji ( без учета этих равенств общее число неизвестных и уравнений системы 18 ). Составим матрицу этой системы:

Из решения этой системы уравнений определяются реакции в КП и движущий момент Мд3

Лекция 6

Анализ движения механизмов и машин

Прямая задача динамики машины, как отмечалось и ранее, является задачей анализа, задачей по определению закона движения механической системы под действием заданных внешних сил. При решении этой задачи параметры машинного агрегата и действующие на него внешние силы известны, необходимо определить закон движения: скорости и ускорения в функции времени или обобщенной координаты. Иначе эту задачу можно сформулировать так: заданы управляющие силы и силы внешнего сопротивления, определить обеспечиваемый ими закон движения машины. Обратная задача - это задача синтеза управления, когда задан требуемый закон движения машины и внешние силы сопротивления, а определяются управляющие силы. При решении задач динамики используются либо уравнения силового равновесия системы - метод кинетостатики, либо уравнения энергетического равновесия - закон сохранения энергии. Для идеальной механической системы, в которой не потерь энергии и звенья абсолютно жесткие, этот закон можно применять в виде теоремы о изменении кинетической энергии. Согласно этой теореме работа всех внешних сил действующих на систему расходуется только на изменение ее кинетической энергии. При этом потенциальные силы - силы веса рассматриваются как внешние

где D T - изменение кинетической энергии системы, T - текущее значение кинетической энергии системы, Tнач -начальное значение кинетической энергии системы,

суммарная работа внешних сил, действующих на систему.

Рассмотрим сложную механическую систему (рис.6.1), состоящую из n подвижных звеньев из которых r - звеньев совершают вращательное движение, j - плоское, k - поступательное. Основная подвижность системы равна W=1. На систему действуют: f - внешних сил и m - внешних моментов. Движение этой системы определяется изменением одной независимой обобщенной координаты. Такую систему при решении задач динамики можно заменить более простой динамической моделью. Положение звена этой модели определяется обобщенной координатой, а динамические параметры заменяются: инерционные - суммарным приведенным моментом инерции Iпрå , силовые - суммарным приведенным моментом Мпрå . Эти параметры динамической модели рассчитываются по критериям подобия модели и объекта, которые определяются соответственно из равенства правых и левых частей уравнений изменения кинетической энергии для модели и объекта, т.е.

Рис 6.1

где

- сумма работ всех внешних сил, действующих на систему,

- работа суммарного приведенного момента,

- сумма кинетических энергий звеньев системы,

- кинетическая энергия динамической модели.

Уравнения движения машины

Уравнение движения машины в интегральной форме.

Запишем для машины теорему о изменении кинетической энергии

где

и уравнение движения машины в интегральной или энергетической форме

Из этого уравнения после преобразований

получим формулу для расчета угловой скорости звена приведения.

Для машин работающих в режиме пуск-останов

формула принимает вид








Дата добавления: 2015-08-21; просмотров: 1443;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.