Возможности и перспективы генетической инженерии растений

 

1.Веками селекционеры работают над выведением новых сортов культурных растений, придавая им свойства, необходимые для практического использования. Достаточно сравнить цветок розы с цветком шиповника, чтобы убедиться, сколько велики достижения трудов человеческих. Правда, при этом вспоминаешь, что путь от диких предков к культурным растениям простирается на десятки тысяч лет. При этом чем лучше сорт растения или порода животного, тем они капризнее, больше подвержены различным вирусным и микробным заболеваниям, малоустойчивы к насекомым, засухе и т.д.

И вот генные инженеры решили помочь селекционерам сделать культурные растения такими же устойчивыми к болезням и различным экстремальным воздействиям, как и их дикие предки.

С этой целью была разработана система переноса в растения различных чужих генов, которые могут сообщать растениям полезные свойства. Наиболее распространен перенос генов с помощью вируса, поражающего фитопатогенную бактерию Agrobacterium tumefaciens. Плазмида найденного в клетках А. tumefaciens способна переносить часть своей ДНК в растительные клетки. Именно в эту ДНК встраивается необходимый «полезный» ген. Растения, в хромосому которых встраивается чужой ген, называется трансгенными. Впервые трансгенные растения были получены в 1982 году учеными из Института растениеводства в Кельне и компании Monsato. В результате растения приобрели устойчивость к антибиотику канамицину, ингибирующему рост.

Одна из важных задач – получение растений, устойчивых к вирусам, так как в настоящее время не существует прямых способов борьбы с вирусными инфекциями сельскохозяйственных культур. Ученые из университета штата Вашингтон решили, что устойчивость к вирусам можно «привить» растениям, вводя в растительные клетки гены белка оболочки вируса табачной мозаики. Эксперимент полностью подтвердил это предположение: интенсивный синтез белка оболочки любого вируса в клетках растений вызывает устойчивость к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций. Еще одна задача связана с защитой растений от насекомых-вредителей. Применение инсектицидов не вполне эффективно, во-первых, из-за их токсичности, во-вторых, потому, что дождевой водой они смываются с растений. В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов, отвечающих за синтез инсектицидов бактериального происхождения. Эти гены ввели в клетки картофеля, томатов и хлопчатника. Трансгенные растения картофеля и томатов были устойчивы к колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе к хлопковой совке. Применение инсектицидов было сокращено на 40-60 %.

Генные инженеры вывели трансгенные растения с удлиненным сроком созревания плодов. Такие помидоры, например, можно снимать с куста красными, не боясь, что они перезреют при транспортировке.

Список растений, к которым успешно применены методы генной инженерии, составляет около пятидесяти видов, включая яблоню, сливу, виноград, капусту, баклажаны, огурец, пшеницу, сою, рис и много других сельскохозяйственных растений, возделывание которых в ближайшем будущем будет существенно облегчено благодаря генетическим модификациям.

При использовании Agrobacterium вводимая ДНК (чужеродный ген) включается в бактериальную плазмиду. Бактериями, несущими химерную плазмиду, заражают клетки растений и переносят в них нужную ДНК. Второй метод так называемая ДНК –пушка состоят в том, что растительные клетки бомбардируют металлическими частицами, покрытыми ДНК. В обоих случаях попавшая в клетку ДНК встраивается в ее хромосомы, затем клетка делится, из нее регенерирует целое растение.

2 Уже первые шаги в области изучения рекомбинантных молекул позволили считать, что достигнут не просто успех, но осуществлен прорыв, открывающий новые пути для познания наследственности. Возникли исключительные условия для изучения механизмов функционирования и структурной организации генома. Используя методы генной инженерии, ученые сделали много поразительных открытий. К одному их них относится явление дискретности генов эукариот. Если раньше было признано положение о коллинеарном переносе генетической информации от ДНК на мРНК и от мРНК на блок, то сейчас установлено, что гены растений имеют внутри такие последовательности, которые после транскрипции удаляются и не копируются в структуре белка. Значимые части гена назвали экзонами, а удаляемые части интронами. Последовательности РНК, соответствующие интронам, вырезаются и не транслируются, а последовательности, соответствующие эксзонам, сшиваются специальными ферментами. Процесс получил название сплайсинг.

Другое очень важное открытие. Было известно, что у бактерий, да и не только у них, в составе генома имеются такие гены, которые перемещаются, мигрируют, меняют свое место на хромосоме. Генная инженерия позволила глубже проникнуть в природу подвижных элементов, изучить их структуру, механизмы действия и биологическую роль. Именно при перемещении подвижных элементов (транспозонов) и происходит часто негомологичная рекомбинация.

 








Дата добавления: 2015-07-14; просмотров: 2346;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.