Характеристика радиомаячной системы VOR
Принцип действия VOR. Радиомаячная угломерная система VOR (Very High Frequency Omni-directional Range) включает в себя наземное оборудование – радиомаяк VOR, и бортовое оборудование, принимающее сигналы этого радиомаяка.
Система работает в УКВ диапазоне на частотах от 108,0 до 117,95 МГц, что соответствует длине волны около 3 м. В принципе частоты радиомаяков всегда кратны 0,05 МГц (50 кГц), например, 108,05 Мгц, 110,80 МГц, 112,65 МГц и т.д. Во многих регионах мира для радиомаяков используют только те частоты, которые кратны одной десятой мегагерца и тогда, вместо, например, 110,80 указывают 110,8 МГц.
Часть указанного диапазона (а именно от 108 до 111,95 МГц) занимает одновременно и другая навигационная система – радиомаячная система посадки ILS (Instrument Landing System), но у неё первая цифра частоты после запятой всегда нечетная (например, 108,35 МГц). Соответственно, у VOR, работающих в этой же части диапазона (а это аэродромные радиомаяки), такая цифра четная, например, 110,80 Мгц. В оставшейся части диапазона (свыше 112 МГц) работают трассовые радиомаяки VOR и частоты могут быть любые, но также с дискретностью 50 кГц.
Для правильного применения системы VOR необходимо иметь представление о том, как она работает. Подробно устройство и работа системы рассматриваются в дисциплине Авиационные радиотехнические средства. Здесь же рассмотрим принцип ее действия в значительно упрощенном и огрубленном виде, достаточном лишь для понимания того, какой именно навигационный параметр измеряет система и каким образом.
На одной и той же несущей частоте радиомаяк излучает два вида сигналов по двум диаграммам направленности: опорный (reference) сигнал и переменный (variable) сигнал. Опорный сигнал промодулирован по частоте огибающей синусоидой с частотой 30 Гц и имеет круговую диаграмму направленности, то есть излучается одинаково во все стороны. В любой точке пространства фаза огибающей опорного сигнала одинакова (рис. 5.1).
У переменного сигнала диаграмма излучения направленная и имеет форму «восьмерки». Если бы ориентация этой «восьмерки» была постоянной, то в любой точке пространства амплитуда принимаемого сигнала была бы постоянной и зависела бы от угла между направлением оси «восьмерки» (здесь будет максимальная амплитуда) и направлением на данную точку.
Но эта диаграмма вращается вокруг вертикальной оси со скоростью 30 оборотов в секунду (в современных VOR вращение создается электронным путем при неподвижной антенне). А 30 оборотов в секунду это и есть 30 Гц. В результате получается, что в любой точке пространства амплитуда принимаемого сигнала меняется с частотой 30 Гц, то есть сигнал оказывается амплитудно промодулированным этой частотой. При этом фаза огибающей будет различной по разным направлениям от радиомаяка. Ведь из-за вращения диаграммы максимум амплитуды сначала пройдет через одно направление, потом через другое…
В направлении на север, где пеленг равен нулю, фазы огибающих опорного и переменного сигналов совпадают. По любому другому направлению эти два сигнала оказываются сдвинутыми по фазе как раз на такую величину, которая равна углу между северным направлением меридиана и данным направлением. А ведь это и есть пеленг этого направления Пс.
Рис. 5.1. Диаграммы направленности VOR
Разумеется, в любой точке пространства оба сигнала (опорный и переменный) складываются, но бортовое оборудование позволяет их разделить – ведь в одном из них использована частотная модуляция, а в другом – амплитудная. Эти две выделенные огибающие сдвинуты по фазе друг относительно друга. Данный сдвиг, выявленный бортовым оборудованием и выраженный в градусах, и является пеленгом данной точки от радиомаяка.
Из изложенного должно быть понятно, что с помощью VOR измеряется пеленг ВС относительно меридиана, проходящего через радиомаяк.
Обозначение VOR на картах. Символы, обозначающие радиомаяк VOR, различаются на картах, выпускаемых разными фирмами, а также на разных видах карт одной и той же фирмы. Наиболее часто используется небольшой символ азимутального круга – кружек с градусными делениями. Иногда он имеет небольшую стрелку в виде флажка, направленного на север. В последнее время компания Джеппесен обозначает VOR в виде шестиугольника или шестиугольника вместе с азимутальным кругом (рис.5.2).
Рис.5.2. Символы радиомаяка VOR на современных маршрутных картах компании Джеппесен
Если в том же месте, что и VOR , установлен и радиомаяк другой навигационной системы (дальномерный маяк DME или угломерно-дальномерный маяк TACAN – о них речь будет идти в последующих главах), то к шестиугольнику добавляется символ этого маяка, например, квадрат в случае DME (рис. 5.3).
Рис.5.3. Символы VOR, совмещенного с другим средством
Ввиду многообразия символов VOR опознавать их на карте лучше не по виду символа, а по информации в «боксе», который нанесен рядом с каждым радионавигационным средством. Убедиться, что в данном месте находится именно VOR, а не какое-то другое средство, можно по следующим признакам:
- частота лежит в пределах от 108 до 118 МГц (единицы измерения частоты в боксе не указываются, но это не вызывает недоразумений, поскольку в таком диапазоне в килогерцах ни одна навигационная система не работает);
- частота всегда указана с дробной частью, даже если значение круглое (например, 112,3; 116,0);
- позывной состоит из трех букв.
а)
б)
в)
Рис. 5.4. Информация о VOR на маршрутных картах
Так, на рис. 5.4(а) VOR с наименованием ALTAY обозначен шестиугольником и азимутальным кругом. Шестиугольник заштрихован, поскольку эта точка является пунктом обязательного донесения. Частота 114,3 МГц, позывной TAI (позывной также повторен символами азбуки Морзе). Координаты радиомаяка 47º44,8' северной широты, 88º 05,0' восточной долготы. Звездочка возле частоты указывает, что радиомаяк работает не круглосуточно. В этом же месте установлен дальномерный радиомаяк DME. Об этом свидетельствует маленькая буква D возле частоты, а также символ в виде квадрата (он охватывает шестиугольник).
На рис. 5.4(б) VOR изображен в виде азимутального круга с флажком. Наличие DME указывает буква D возле частоты. Здесь же указана буква Н в скобках, которая обозначает класс VOR (H – High, радиомаяк для использования в верхнем воздушном пространстве).
На рис. 5.4(в) радиомаяк VOR обозначен просто небольшим кружком внутри черного треугольника (сам треугольник обозначает пункт обязательного донесения). Но внутри бокса также указана вся необходимая информация.
Радиомаяки VOR и ихклассификация. Радиомаяк VOR передает азбукой Морзе свой позывной, состоящий из трех букв. Большинство радиомаяков способны передавать информацию в телефонном режиме, то есть голосом. Некоторые голосом передают свой позывной или название, например, «Brindisi VOR». Если маяк временно не работает (например, находится на техническом обслуживании), то он ничего не передает, либо передает азбукой Морзе слово TEST (─ • ••• ─). Разумеется, в этом случае его использовать нельзя.
VOR является одним из самых давно используемых навигационных средств. За годы эксплуатации конструкция маяков неоднократно совершенствовалась, они выпускаются разными фирмами, поэтому выглядеть могут совершенно по-разному (рис.5.5-5.8). Выпускается такое оборудование и в России. В документах аэронавигационной информации они также обозначаются как VOR, хотя официально имеют другие названия, присвоенные их производителями (например, «радиомаяк азимутальный»).
Рис. 5.5.. Радиомаяк азимутальный РМА-90 (Россия)
Рис. 5.6. Радиомаяк азимутальный доплеровский DVOR-2000 (Россия)
Рис. 5.7. VOR, совмещенный с DME
Рис.5.8. Доплеровский VOR, совмещенный с TACAN
За рубежом маяки классифицируются в зависимости от объема воздушного пространства, в котором предполагается их применение. Поскольку маяки работают в УКВ диапазоне, то в принципе максимальная дальность их действия определяется дальностью прямой видимости (см. параграф 2.6) и зависит от высоты полета. Но если радиомаяк будет использоваться лишь в ограниченном районе (например, в районе аэродрома), то он может работать на пониженной мощности, что, естественно, повлияет на дальность уверенного приема сигнала.
Радиомаяки класса T (Terminal, что в данном случае можно перевести как «аэродромные») предназначены для навигации в районе аэродрома и должны обеспечивать получение навигационной информации на высотах от не менее 300 до примерно 4000 м на удалении не менее 25 морских миль (это примерно 46 км).
Радиомаяки класса L (Low Altitude, малых высот) должны обеспечивать прием сигнала от них на высотах от не менее 300 м до 18 000 футов (около 5500 м) на удалении до 40 морских миль (74 км).
Радиомаяки класса H (High Altitude, больших высот) должны обеспечивать прием сигнала (рис. 5.9):
- на высотах от 300 м до 14500 футов (примерно 4400 м) до удаления 40 морских миль (74 км);
- на высотах от 14 500 футов до 60 000 футов (около 18 300 м) – на удалении до 100 морских миль (185км);
- на высотах от 18 000 футов до 45 000 футов (около 13700 метров) до удаления 130 морских миль (240 км).
Рис. 5.9. Объем воздушного пространства, в котором радиомаяк VOR должен обеспечивать получение информации
Указанные значения задают так называемый «рабочий объем воздушного пространства» (service volume), в котором гарантируется уверенный прием сигналов именно того радиомаяка, на который настроился пилот. Может вызвать недоумение тот факт, что в соответствии с приведенными выше цифрами и рис. 5.9, дальность на высотах выше 45000 фт меньше, чем ниже этой высоты (100 морских миль вместо 130). Ведь, казалось бы, чем больше высота, тем больше должна быть дальность.
Но указанные дальности, это вовсе не максимальные дальности на которых возможен прием сигнала. Как правило, сигнал можно принимать и на больших удалениях. Эти дальности кроме обеспечения приема сигнала еще и гарантируют, что находясь в их пределах, ВС не попадет в зону действия другого радиомаяка, работающего на такой же или близкой частоте. Именно потому, что с высотой реальная дальность действия возрастает, на больших высотах (выше 45000 фт) может оказаться, что ВС оказалось в зоне действия двух радиомаяков. И если их частоты близки, то на какой из них окажется настроенным бортовое оборудование – неизвестно. Поэтому установленная дальность 100 миль (для больших высот) просто гарантирует, что на меньших удалениях такого не произойдет.
Радиомаяки непрерывно совершенствуются. PVOR (Precision VOR) является дальнейшим развитием системы. Он имеет диаграмму направленности в виде нескольких лепестков. Для устранения вызванной этим неоднозначности используются два канала измерения пеленга – грубый и точный. PVOR обеспечивает более точное измерение пеленга и менее подверженное помехам.
DVOR (Doppler VOR – доплеровские VOR) являются более точными, но и более сложными. В таких радиомаяках опорный сигнал имеет амплитудную модуляцию, а переменный сигнал – частотную, то есть как раз наоборот по сравнению с обычными радиомаяками. Это способствует уменьшению помех, например, от местных предметов вблизи радиомаяка.
Эффект вращения диаграммы направленности создается электронным путем многочисленными неподвижными антеннами, расположенными по окружности диаметром 13,4 м (см. рис. 5.6). При таком диаметре и вращении со скоростью 30 оборотов в секунду линейная скорость вращения диаграммы (1264 м/с) превышает скорость звука. Из-за этой линейной скорости для наблюдателя, находящегося в стороне от радиомаяка, получается доплеровский сдвиг частоты. Напомним, что эффект Доплера заключается в том, что при приближении источника излучения к наблюдателю воспринимаемая частота больше фактически излучаемой. При удалении – наоборот.
Антенна, излучающая опорный сигнал, несколько смещена от центра вращения диаграммы переменного сигнала. Именно ее расположение является точкой начала отсчета пеленга. Из-за смещения антенны переменного сигнала его доплеровский сдвиг будет зависеть от направления излучения, отсчитываемого от антенны опорного сигала. Принимая на борту оба сигнала можно более точно измерить пеленг.
Несмотря на разнообразие видов радиомаяков, бортовое оборудование может работать с любым из них. Пилот может и не знать, с маяком какого вида он сейчас работает.
Разработаны и еще более совершенные PDVOR (Precision Doppler VOR), но для работы с ними уже должны использоваться другие приемники.
Навигационный параметр, измеряемый VOR. Как следует из описанного выше принципа работы данной навигационной системы бортовое оборудование путем измерения разности фаз опорного и переменного сигналов определяет пеленг самолета относительно меридиана, проходящего через радиомаяк. Какого именно меридиана? В подавляющем большинстве случаев радиомаяки ориентируются так, что нулевое значение пеленга совпадает с северным направлением магнитного меридиана радиомаяка. Поэтому с помощью VOR непосредственно измеряется магнитный пеленг самолета (МПС) относительно меридиана радиомаяка. Так мы далее и будем считать в данном учебном пособии.
На самом деле в полярных районах (например, на севере Канады) радиомаяки ориентируют по истинному меридиану, поскольку магнитное склонение там велико и достаточно быстро меняется. В таких случаях об этом обязательно указывается на полетной карте. Так, на рис. 5.10 указано «VOR/DME Oriented True North» (VOR/DME ориентирован на истинный север). Соответственно и заданный путевой угол от этого радиомаяка указан истинный, что обозначено буквой T (указано 214ºT).
5.10. VOR в полярном районе
Применительно к использованию VOR магнитный пеленг самолета получил еще и другое широко употребляемое название – радиал (radial). По сути радиал - это просто и есть магнитный пеленг самолета от радиомаяка – просто другое, более короткое название. Радиалы выражают целым числом (доли градуса не используют) и обозначают либо так же как пеленги, например, 128º , либо как R-128 (в этом случае значок градусов не указывают). Можно считать, что от радиомаяка исходят 360 направлений (радиалов) во все стороны, как на рис.5.11.
Рис. 5.11. Радиалы (пеленги)
Важно помнить, что радиал – это всегда направление ОТ радиомаяка. Использовать этот термин применительно к направлению НА маяк (то есть к МПР) нельзя.
Таким образом, можно сказать, что с помощью VOR непосредственно измеряется текущее значение радиала ВС.
Точность измерения пеленга (радиала) зависит от погрешностей как наземного, так и бортового оборудования. Суммарная погрешность измерения пеленга обычных радиомаяков характеризуется средней квадратической погрешностью (СКП) σП=1,6…2,1º. Для PVOR и DVOR это значение меньше - 1º и менее.
Приведенные значения характеризуют точность измерения пеленга. Но если VOR используется для выдерживания ЛЗП, то необходимо также учитывать так называемую погрешность пилотирования FTE (Flight Technical Error). Ведь даже если бы пеленг измерялся абсолютно точно, самолет не смог бы пролететь по ЛЗП как по струнке. Даже автомобиль по дороге едет не абсолютно по прямой, а несколько колеблется относительно нее. Применительно к полету по VOR погрешность пилотирования принято характеризовать средней квадратической погрешностью 1,25º . Эта величина суммируется с погрешностью измерения, но не арифметически, а так, как это следует делать применительно к случайным величинам (квадратный корень из суммы квадратов двух СКП).
Если таким образом получить суммарное значение СКП, то оно будет соответствовать вероятности 0.68 (см. параграф 2.5). Но на практике чаще используют значение погрешности, соответствующее вероятности 0,95, то есть удвоенную СКП. Поэтому в документах ИКАО и в другой технической литературе указывается, что с помощью обычных VOR обеспечивается выдерживание ЛЗП (при полете на или от VOR) с погрешностью 5º. Это означает, что в среднем в 95 случаях из 100 самолет будет находиться в пределах ±5º от ЛЗП.
На маршрутных и аэродромных картах могут указываться радиалы нужных точек на ЛЗП, чтобы можно было проконтролировать моменты пролета этих точек. Так, на рис.5.12 пролет пункта необязательного донесения MIXAT можно проконтролировать по достижению радиала R-127 от VOR с позывным CZE (частота 114,5) или с помощью радиала R-297 от VOR с позывным JED (частота 115,6). Сами радиомаяки находятся за пределами рисунка (а могут находиться и за пределами листа карты).
Рис. 5.12. Радиалы пункта MIXAT
С помощью опубликованного на карте радиала может быть задано направление полета от ЛЗП, проходящей через радиомаяк. На рис. 5.13 через VOR/DME с позывным SND проходят пять участков воздушных трасс, на которых ЛЗП заданы радиалами 055º, 138º, 259º, 294º и 328º от этого радиомаяка. В принципе перечисленные значения можно считать и заданными магнитными путевыми углами этих участков трасс (ЗМПУ). Ведь ЗМПУ отсчитываются от магнитного меридиана начального ППМ участка, а в этом ППМ как раз и находится VOR, от магнитного меридиана которого отсчитываются радиалы.
Рис. 5.13. Радиалы, задающие ЛЗП
Но некоторое различие между радиалом и ЗМПУ все же имеется (точнее – может иметься). Действительно, VOR ориентируют по магнитному меридиану пункта, в котором он расположен (например, ППМ) и тогда радиал и ЗМПУ совпадают. Но ведь магнитное склонение со временем меняется, хотя и медленно. Северное направление магнитного меридиана через пару-тройку лет станет другим, а радиомаяк останется ориентированным как и прежде. Поэтому для выдерживания ЛЗП по-прежнему необходимо выдерживать все тот же опубликованный когда-то на карте радиал. Но он уже не будет совпадать с ЗМПУ. Ведь ЗМПУ, так же как и измеряемый компасом магнитный курс, отсчитываются от фактического направления магнитного меридиана (вектора напряженности магнитного поля Земли), которое уже изменилось.
Для каждого радиомаяка VOR публикуется значение угла между северным направлением истинного меридиана и направлением нулевого радиала. По-английски эта величина называется Declination. На русском языке она общепринятого названия пока не имеет, но иногда называется «склонением станции». Теоретически она должна совпадать с магнитным склонением, но по описанным выше причинам может со временем от него и отличаться.
По правилам, принятым в США, если Declination отличается от магнитного склонения более, чем на 2º, то радиомаяк необходимо заново выставить по магнитному меридиану. Но на практике, видимо, из-за финансовых соображений, это не всегда делается и иногда эта разница достигает 4-5º.
На современных ВС для каждого радиомаяка величина declination хранится в бортовых базах аэронавигационных данных и учитывается при автоматизированной навигации.
Дата добавления: 2015-06-22; просмотров: 7599;