Матрица жесткости КЭ
Известные в механике геометрические и физические соотношения для континуальных систем можно записать в виде, аналогичном рассмотренным ранее уравнениям дискретного подхода. Например,
для дискретной системы: для континуальной системы: , , , .
Здесь и – вектора деформаций и напряжений, а и – матрицы равновесия и податливости континуальной системы. В отличие от дискретного подхода, уравнения континуального подхода удовлетворяются во всех точках системы.
При рассмотрении конечного элемента как континуальной системы принцип Лагранжа можно записать в виде
,
где левая и правая части представляют возможные работы внутренних и внешних сил, а интегрирование ведется по объему КЭ V.
После этого осуществляется переход к дискретной модели КЭ с использованием матрицы форм H. Тогда после ряда преобразований получается матричное уравнение, связывающее вектор узловых перемещений u с вектором узловых усилий P КЭ:
,
в которой симметричная квадратная матрица
называется матрицей жесткости конечного элемента. Физический смысл элемента kij этой матрицы – это реакция (реактивная сила), возникающая в i-ом направлении отзаданного единичного перемещения в j-ом направлении.
К примеру, для рассмотренного ферменного КЭ, находящегося в одноосном напряженном состоянии, геометрическое уравнение будет . Сравнив его с матричным уравнением , видим, что матрица равновесия является дифференциальным оператором с одним членом, т.е. . Из уравнения связи между деформацией и напряжением видно, что матрица податливости будет .
Для определения матрицы жесткости КЭ вычислим:
,
, .
Интегрирование по объему V сводится к интегрированию по длине l КЭ, т.к. (F − площадь сечения КЭ). Тогда
.
При рассмотрении прямоугольного КЭ толщиной t и размерами 2a и 2b с четырьмя узлами i, j, k, m и восемью узловыми перемещениями (рис. 14.4), матрица жесткости будет иметь размеры 8´8.
Рис. 14.4
Для краткости записи матрицу жесткости этого КЭ можно представить в блочной форме с 16 блоками одинаковой размерности 2´2:
.
Здесь μ – коэффициент Пуассона. Элементы каждого блока матрицы K определяются по разным формулам. Например,
.
Дата добавления: 2015-06-17; просмотров: 870;