Задание К1

4.1.1. Пример решения контрольного задания К1

Пусть точка М движется в плоскости xOy в соответствии с уравнениями

.

Для момента времени = 0,5 с найти положение точки М на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Решение

Заданный закон движения точки в координатной форме можно рассматривать как параметрические уравнения траектории точки. Исключим время t из уравнений движения и получим уравнение траектории точки в виде:

= 1.

Таким образом, траекторией точки М является эллипс со смещенным центром, изображенный на рис. 4.1. Отметим на траектории положение точки М1 (x1, y1) в момент времени t1 = 0,5 c

см;

см.

Вектор скорости точки представим в виде:

,

где – орты координатных осей Оx и Оy; – проекции вектора скорости точки на координатные оси, которые равны 1-м производным от соответствующих координат по времени

В момент времени t1 = 0,5 c

Вектор скорости точки строим по двум взаимно перпендикулярным проекциям и в соответствии с выбранным масштабом

.

Полученный вектор должен быть направлен по касательной к траектории точки в сторону движения. Модуль скорости точки определим по уже найденным проекциям

Вектор ускорения точки представим в виде:

,

где – орты координатных осей Оx и Оy; – проекции вектора скорости точки на координатные оси, которые равны 1-м производным от проекций вектора скорости или 2-м производным от соответствующих координат по времени:

В момент времени t1 = 0,5 c

Вектор ускорения точки строим по двум взаимно перпендикулярным проекциям и в соответствии с выбранным масштабом

.

Полученный вектор ускорения точки в общем случае должен отклоняться от вектора скорости в сторону вогнутости траектории, а при движении по эллипсовидной траектории – проходить через центр эллипса. Модуль ускорения точки определим по уже найденным проекциям

Вектор полного ускорения точки можно также представить в виде геометрической суммы его проекций на оси естественной системы отсчета

,

где и – единичные орты касательной и главной нормали; и – соответственно проекции вектора ускорения на касательную и главную нормаль. Касательную М1t направляем по касательной к траектории в сторону движения точки движения, а главную нормаль М1n – перпендикулярно касательной в сторону вогнутости траектории. При вычислении касательного ускорения удобно воспользоваться формулой, устанавливающей связь между координатным и естественным способами задания движения точки

.

В момент времени t1 = 0,5 c

.

Значение касательного ускорения имеет отрицательный знак, следовательно, в данный момент времени движение точки замедленное и вектор касательного ускорения направлен в противоположную сторону направлению вектора скорости точки .

Нормальное ускорение вычислим по формуле , если известен радиус кривизны траектории. Например, если точка движется по окружности радиусом R, то в любой точке траектории ρ = R. Если же траекторией движения точки является прямая, то , следовательно, . В данном случае радиус кривизны траектории заранее не известен, поэтому нормальное ускорение определяем по формуле:

.

В момент времени t1 = 0,5 c

.

Построим векторы и в соответствии с уже выбранным масштабом, а затем сложим их геометрически. В результате получим тот же вектор полного ускорения точки , который ранее уже был получен геометрической суммой составляющих и . Этот факт служит контролем правильности решения.

Радиус кривизны траектории в рассматриваемой точке определим по формуле

.

В момент времени t1 = 0,5 c

.

Результаты всех вычислений для заданного момента времени приведены в табл. 4.1.

Таблица 4.1

Координаты, см Скорости, см/с Ускорения, ρ, см
x y
8,82 2,59 4,44 2,22 4,96 –6,97 3,49 7,79 –4,67 6,23 3,95

Примечание. В последнем столбце через ρ обозначен радиус кривизны траектории в точке .

4.1.2. Условие и варианты задания К1

По заданным уравнениям движения точки М установить вид ее траектории и для момента времени найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Исходные данные для решения приведены в табл. 4.2.

Таблица 4.2

Номер варианта Уравнения движения Время с
, см , см
  К1-1  
  К1-2  
  К1-3  
К1-4 –4t 0,5
К1-5  
  К1-6  
  К1-7  
К1-8 –3t 0,5
  К1-9  
  К1-10  
  К1-11  
К1-12 3t 4t2 + 1 0,5

 

Продолжение табл. 4.2

Номер варианта Уравнения движения Время с
  К1-13  
  К1-14  
К1-15 –5t2 – 4 3t
  К1-16   2 – 3t – 6t2  
  К1-17  
К1-18 7t2 – 3 5t 0,25
  К1-19   3 – 3t2 + t  
  К1-20  
К1-21 –6t 2t2 – 4
  К1-22  
  К1-23  
К1-24 –4t2 + 1 –3t

 








Дата добавления: 2015-06-17; просмотров: 2372;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.