Мышцы, соединительная ткань и их иннервация

Поперечно-полосатые мышцы вместе со связками и пе-риартикулярными тканями составляют около половины массы человеческого тела. Они не только осуществляют и обеспечивают моторику, но и участвуют в разнообразных метаболических процессах. Напомним некоторые данные


о морфологии и функции мышц в той мере, в какой это не­обходимо для понимания патогенеза рефлекторных нару­шений в опорно-двигательном аппарате при остеохондрозе.

Деятельность мышцы сводится к сближению мест ее прикрепления: к пассивному напряжению при растяжении, при сокращении, когда мышца не в состоянии укоротиться (изометрическое сокращение, большая нагрузка); к актив­ному напряжению, возникшему независимо от сокращения или нагрузки (последнее наблюдалось у человека со свобод­но висящими сухожилиями мышц: удавалось активное со­кращение и активное напряжение без сокращения — PlautR., 1924). Растяжение мышцы происходит и при любом ее сокращении, начинаясь в лучше иннервируемой зоне брюшка мышцы при фиксированных концах. Это приводит к удлинению и натяжению крайних участков, которые уже оказываются растянутыми, когда волна возбуждения дохо­дит до них. Разные части одной и той же мышцы могут быть различными по функции, поэтому существует понятие ак-тона — части мышцы, волокна которой распределены так, что создаваемые ими моменты силы относительно сустава всегда совпадают по направлению.

Каждый актон имеет в среднем 4 функции, а на одну сте­пень свободы приходится 9 функций актона. При одном и том же укорочении мышечных волокон сухожилие у пери­стой мышцы переместится меньше, чем у лентообразной.

Взаимное расположение, форма и величина мышечных волокон различны в различных мышцах. Как раз в тех, на долю которых выпадает наиболее тяжелая работа (четы­рехглавая бедра, двуглавая плеча и др.), длина волокон не превышает 1/3 всей длины мышцы. Они располагаются ко­со между глубоко проникающими сухожильными тяжами. Вся мышца сокращается сразу по всей длине, и растяжение каких-либо участков невозможно. Упомянутое же растяже­ние краевых участков происходит в мышцах с параллельны­ми волокнами при центральном расположении иннерваци-онной зоны.


1 Мы рассматриваем как недостаточно обоснованное объединение подобных форм в якобы нозографическом понятии (и термине) миофибралгии.


Ортопедическая неврология. Синдромология



 


 



 


Рис. 3.15. Функциональные модели скелетной мышцы. Механизм сокращения: а — несовершенный вариант модели без учета роли со­единительнотканных элементов мышцы; работа одного саркомера: сверху — растянутая мышца, размыкание взаимно скользящих акти-номиозиновых нитей миофибриллы; снизу — сокращение, сплетенные мостики актино-миозиновых нитей миофибриллы; б — более со­вершенный вариант модели. С учетом роли соединительнотканных элементов всей мышцы. V()=V; F()=2F — сила тяги при постоянном внутримышечном давлении.


Вся мышца как орган снаружи одета соединительноткан­ным эпимизием, от которого внутрь отходят перегородки перимизия, окружающего пучок мышечных волокон, отде­ленных друг от друга эндомизием (рис. 3.14). Каркас эндо-мизия построен из пересекающихся элементов, образую­щих армирующую решетку. Эндомизий состоит из рыхлой соединительной ткани, содержащей аморфное вещество, коллагеновые волокна и фибробласты. В нем сеть капилля­ров оплетает каждое мышечное волокно. Лимфатических сосудов в нем нет.

Соединительнотканные перемычки мышцы обильно ин-нервируются рецепторами. Известно, что в фасциях плода они локализуются вблизи сосудистых петель (преимущест­венно колбы Краузе). Позже они пучкуются, к ним присое­диняются свободные болевые рецепторы, которые с годами все больше ветвятся. Особенно много фатер-пачиниевых колб. Они располагаются и в фасциальных нервных ство­лах, и в жировых дольках. Окончания становятся все более поливалентными. У стариков в рецепторах исчезают гли-альные клетки, происходит распад терминалей, дезагрега­ция фибрилл (Ткачук В.А., 1963).


Мышечная клетка (волокно) одета прозрачной оболоч­кой — сарколеммой. Последняя по структуре подобна мем­бране нервной клетки и играет важную роль в возникнове­нии и проведении возбуждения. Саркоплазма, заключенная в сарколемму, состоит из саркоплазматического матрикса — однородной среды, в которую погружены миофибриллы — сократимая субстанция саркоплазмы неживой природы и образующиеся из нее по мере превращения эмбриональ­ных клеток (миобластов) в мышечное волокно. Одно волок­но содержит до 1000 фибрилл. Последние представляют со­бой колонки, составленные из цилиндриков — тонких и толстых филаментов. Толстые филаменты темные, анизо­тропные, состоят из миозина, тонкие белые — изотропные, состоят из актина. Белки актин и миозин составляют акто-миозиновый комплекс, который под влиянием АТФ дает мышечное сокращение (Энгельгарт В.А., Любимова М.И., 1939; Szent-Gyorgyi A., 1964). Каждый тонкий цилиндрик (диск) делится пополам Z-линией. Участок мышечного во­локна между двумя Z-линиями называется саркомером. Тонкий миофиламент по одну сторону Z-линии ориентиро­ван в одном направлении, по другую — в противоположном.


Глава III. Методики вертеброневрологического обследования



 


В центральной области толстого цилиндрика тонкие и тол­стые миофиламенты не перекрывают друг друга. В двух по­ловинах толстого цилиндрика (диска) актиновые филамен-ты движутся с двух сторон саркомера друг к другу, к его се­редине (рис. 3.15 а). Кроме того, в саркоплазме расположе­ны миотрубочки: продольные, параллельные с филамента-ми, и поперечные. При сокращении мышцы укорачивается лишь анизотропное вещество. Оно разбухает в поперечном направлении благодаря поглощению воды. При растяжении мышцы анизотропное вещество удлиняется. При рабочей гипертрофии увеличивается саркоплазма, а не субстанция миофибрилл.

Ядра — центры питания, располагаются по оси волокна между фибриллами. Ядерный аппарат особенно богат в ме­стах расположения нервных окончаний — в двигательной пластинке.

Соли, кислоты, щелочи и алкалоиды в малых дозах, рав­но как и охлаждение, понижают, а те же вещества в больших дозах, так же как и нагревание, повышают возбудимость мышцы. Ацетилхолин в малых дозах повышает возбуди­мость, а в больших дозах, давая сильное контрактурное со­кращение, угнетает ее (Беритов И.С., 1947).

Под влиянием нервного импульса происходит кратко­временная деполяризация мембраны нервного окончания, увеличивается проницаемость кальция внутрь окончания, что способствует резкому увеличению частоты выделения квантов ацетилхолина в синаптическую щель. Это приводит к увеличению проницаемости сарколеммы для ионов на­трия и калия, к возникновению потенциала концевой плас­тинки.

Мышца сокращается тем скорее и интенсивнее, чем меньше она растянута, чем больше она отдохнула и чем вы­ше ее температура. Растяжение происходит тем больше, чем сильнее ее тетаническое сокращение и чем больше ее утом­ление.

Принято судить о функции контрактильного аппарата по скорости развития изометрической тетанической активнос­ти. Считают, что это показатель скорости скольжения акти-новых и миозиновых нитей, т.е. скорости образования их мостиков (Богданов Э.И., 1989). Однако указанные показа­тели связаны с функцией не одних лишь мышечных фиб­рилл.

Кроме активных контрактильных элементов в мышце имеются, как упомянуто выше, соединительнотканные уп­ругие части — оболочки: эпимизий, перимизий и эндоми-зий (см. рис. 3.14).Подробнее на роли этих элементов мы остановимся в главео патогенезе.

Электронное микроскопирование содновременной ре­гистрацией силы тяги и длины саркомера показало, что си­ла активных компонентов максимальна при наибольшем перекрытии активных участков актиномиозиновых фила-ментов и падает при уменьшении или при увеличении об­шей длины мышцы, когда уменьшается или увеличивается расстояние между ее концами, т.е. когда уменьшается соот­ветственно число поперечных мостиков, образующихся между миозиновыми и актиновыми нитями.

Как может миофибрилла передать в концах сарколеммы силу тяги большую, чем это позволяет ее механическая прочность? Два Z-диска соседних миофибрилл связаны продольными промежуточными миофиламентами. Они растяжимы. Тем не менее они не растягиваются, тогда как


более прочные сухожилия удлиняются. Если бы механичес­кая тяга передавалась вдоль мышечного волокна от сарко­мера к саркомеру, эти филаменты должны были бы подвер­гаться растяжению. Механическое напряжение сетки кол-лагеновых волокон при сокращении миофибрилл в случае передачи усилий вдоль саркомеров должно бы падать, а оно увеличивается в ходе сокращения. Кроме того, нет морфо­логически установленного перехода миофибрилл в сухожи­лие. Поэтому эстонский исследователь А.А.Вайн (1990) предложил принципиально новую функциональную модель скелетной мышцы (см. рис. 3.15). Автор подтвердил, что в результате скольжения актиновых и миозиновых нитей повышается внутримышечное давление и увеличивается периметр мышечных оболочек (Henkelom В. et al., 1979). Эти соединительнотканные структуры (сарколемма, пери-и эпимизий) содержат коллагеновые волокна. Волокна сар­колеммы имеют решетчатую ориентацию, которая не поз­воляет увеличиться объему мышцы (Заалишвили М.М., 1971; Гурфинкель B.C., Левин Ю.С., 1985). Тяга устремляется вдоль мышцы пропорционально увеличению ее периметра. Она передается сухожилию не от малопрочного саркомера, а че­рез эндо-, пери- и эпимизий, т.к. прочность соединитель­ной ткани на порядок выше прочности миофибрилл. Т.к. сеть коллагеновых волокон в эндо-, пери- и эпимизий не позволяет увеличить объем, а содержимое, окруженное эти­ми оболочками, можно рассматривать как несжимаемую вязкую жидкость, то в этих структурах возникает механиче­ское напряжение, которое передается через эндо-, пери-и эпимизиум к сухожилию мышцы (см. рис.3.15). Прежняя функциональная модель мышцы не объясняет ее биомеха­нические свойства: жесткость, демпферность, релаксацион-ность и ползучесть. Эти свойства нереальны за счет попе­речных мостиков. Новая же модель объясняет эти черты благодаря включению факторов эластичности соединитель­нотканных структур мышцы. Они аккумулируют энергию упругих деформаций при рекупурации (частичном возвра­те) энергии во время движения. Данная модель дала основа­ние пересмотреть и некоторые стороны понятия мышечно­го напряжения, тонуса в условиях нормы и патологии, вари­анты сокращения (изометрического, кон- и эксцентричес­кого) и пр. На этом мы остановимся после рассмотрения вопросов иннервации мышцы. Здесь же отметим, что R.Alexander, H.Bennet-Clark еще в 1977 г. отметили, что в ахилловом сухожилии может накапливаться потенциаль­ной энергии упругой деформации больше, чем в икронож­ной мышце.

Нам представляется, что имеются косвенные данные о роли реализации и синкинетических реакций при вынуж­денных позах, при неблагоприятных двигательных стерео­типах. Так, в норме при глубоком вдохе синкинетически на­прягаются сгибатели шеи (голова как бы тянется к источни­ку кислорода). Оказалось, что временные показатели этой реакции нарушаются, если меняется упругость, плотность («гистерезис») выйной связки (JiroutJ., 1993).

Кривая сила-время может быть разделена на 4 зоны: 1) смедленным нарастанием напряжения (гофрированная структура коллагена — растяжение при растягивании); эта зона составляет 1-4% от начальной длины волокна; 2) с ли­нейной зависимостью между приростами напряжения и уд­линением — 2-5% от начальной длины сухожилия и 20-40% — у связок; 3) с первым повреждением волокон —


Ортопедическая неврология. Синдромология


Рис. 3.16. Схематическое изображение мышечного веретена.

нарушение линейной зависимости; предел прочности; 4) с резким падением напряжения из-за разрушения препа­рата. Препарат продолжает удлиняться, это удлинение на­зывается ползучестью.

Модуль упругости Юнга изменяется по мере растяжения препарата. Механические свойства связок и сухожилий за-


висят от скорости растягивания: чем оно медленнее, тем меньше предельная нагрузка и энергия разрыва; при быст­ром растягивании развивается последующая релаксация. В процессе разминки теплопотери в сухожилиях уменьша­ются, тренировки увеличивают сопротивление разрыву. Чем больше растянута мышца, тем менее она удлиняется при увеличении силы растяжения. При растягивании целой мышцы основное сопротивление оказывают соединитель­нотканные элементы. В активной мышце сила тяги равна сумме сил контрактильного и параллельного упругого ком­понентов. Еще ученик Галилея G.Borelli (1680) в книге «De motu animalium» показал, что сила сгибателей колена при разогнутом суставе составляет 51 фунт, при согнутом — 21 фунт: в активно растянутой мышце выступает действие соединительной ткани (чем длиннее мышца, тем больше сила, как и в пассивно растянутой мышце). Длина пассив­ной мышцы в покое (упругих сил нет) — это длина равно­весная или свободная. Она чуть меньше естественной дли­ны в живом теле.

Мышца иннервирована не только эфферентными, но и афферентными нервными окончаниями.

Более 100 лет назад, в 1863 г., Kiihne дал детальное гисто­логическое описание органов афферентной иннервации скелетной мускулатуры, назвав их нервно-мышечными ве­ретенами (рис. 3.16). По свидетельству A.Ruffini (1898), ре­цепторы были впервые открыты Hassal в 1851 г. Вскоре C.Golgi (1870) сообщил о сухожильных рецепторах, после чего последовала серия работ о мышечных и других рецеп­торах (Чирьев С.И., 1870; Догель Е.С., 1897 и др.). Морфоло­гические данные получили блестящее подтверждение и бы­ли развиты далее в трудах И.М.Сеченова (1863), C.S.Sherrington'a(1894).

Нервными окончаниями наиболее богато брюшко мыш­цы. В обычных условиях и сокращение начинается в лучше иннервированных отделах, а затем уже в других.

Запуск сокращения мышечного волокна происходит вследствие деполяризации его поверхностной мембраны. Затем деполяризуются его узкие инвагинации, образуемые мембранными ретикулярными выростами. Это служит сиг­налом для освобождения ионов Са2+ из саркоплазматичес-кого ретикулума, что ведет к увеличению концентрации в саркоплазме свободных ионов кальция, которые связыва­ются с тропонином С. Это снимает блокирующее действие тропонин-тропомиозинового комплекса на актомиозино-вую систему волокна. Освобождаемый Са2+ откачивается обратно, реутилизируется в цистерны саркоплазматическо-го ретикулума в результате работы Са-АТФазы. Поэтому в миоплазме концентрация ионов кальция уменьшается, он удаляется из тропомиозинового комплекса, и мышца рас­слабляется.

Активность сокращения зависит не только от кальцие­вой регуляции, но и от уровня фосфорилирования и дефос-форилирования легких цепей миозина.

Непосредственным источником энергии сокращения мышцы является анаэробное расщепление АТФ (АДФ, Р). Ресинтез АТФ обеспечивается креатинфосфатом через окисление. Для восстановления креатинфосфата требуется расщепление гликогена до молочной кислоты. В момент расслабления мышцы прекращается расщепление фосфор­ной и молочной кислот, причем молочная восстанавливает­ся в гликоген.


Глава III. Методики вертеброневрологического обследования



 


О механизме раздражения мышечных рецепторов можно судить по рис. 3.17.

Из веретен, деформирующихся под влиянием сокраще­ния и растяжения экстрафузальных волокон поперечно-по­лосатой мышцы, следует информация, направляющаяся че­рез задний корешок в различные отделы центральной нерв­ной системы.

Все эти данные послужили основанием для развития представления о собственных рефлексах мышцы, о стрэч-рефлексах. В последующем, с учетом данных о рецепторах сухожилий, периартикулярных и артикулярных тканей, возникло учение об артрогенных мышечно-тонических ре­акциях и контрактурах. Взгляды эти были широко исполь­зованы в клинике (Charcot J., 1886; Vulpian А., 1886; Корни­лов А. А., 1895; Даркшевич Л.О., 1907; Вельяминов М.Я., 1924; Илютович Г.Е., 1951; Емельянов Л.Н., 1958; Лауцевичус Л.З., 1950, 1967, 1971 и др.).

После того, как P.Hoffman (1922) описал собственный рефлекс мышцы, это учение в 40-е годы обогатилось важ­ными данными. Оказалось, что до сокращения мышцы, т.е. до механических воздействий на веретено, последнее полу­чает по тонким волокнам — у-эфферентам L.Lexel (1945) — предварительную информацию о предстоящем сокраще­нии. Опережая импульс, следующий по толстым волокнам переднего корешка к нервно-мышечной пластинке, к вере­тену «спешат» импульсы-курьеры, импульсы-предвестни­ки. Когда же мышца сократилась, сигнал из афферентных окончаний веретена поступает в центр, неся информацию об этом.

Мнение о том, что ct-малые нейроны заканчиваются на красных мышечных волокнах, а сс-большие — на белых, фа-зических, оспаривается рядом авторов (Юсевич Ю.С., 1958 и др.). Если состояние у-эфферентов — важный перифери­ческий фактор формирования рефлекса на растяжение и ре­флекторного тонуса, состояние а-малых нейронов — цент­ральный фактор мышечного тонуса.

Серое вещество спинного мозга содержит большое коли­чество поперечно расположенных аксонов афферентных и эфферентных волокон и их коллатералей, объединяющих как одноименные ядерные образования, так и другие груп­пы нейронов. Именно эти структуры играют значительную роль в распространении процессов возбуждения и торможе­ния по всему спинному мозгу (Микеладзе А.Л., 1965). Обна­ружено небольшое число афферентных волокон, вступаю­щих через передние корешки, которые оказались симпати­ческими.

Проприоспинальные связи обеих сторон поясничного и шейного утолщений осуществляются не только комиссу-ральными клетками 8 пластины Рекседа, но и клетками с длинными аксонами (Shimamura M., 1973). Описанные выше прямые и обратные связи мышцы обеспечивают не только проприоцептивную глубокую и другие сложные ви­ды чувствительности, но и ряд рефлекторных процессов с участием разных уровней: сегментарных, ствола мозга, мозжечка, больших полушарий. Уже центральные нейроны первого порядка представляют собой своеобразные усили­тели афферентного потока — они генерируют разряды боль­шей частоты и длительности, чем исходные (Костюк П.Г., I960 и др.). Благодаря их «спонтанной» активности, особен­но в условиях благоприятствующих супраспинальных поли-синаптических влияний, кратковременная афферентная


Рис. 3.17. Схематическое изображение мышечного веретена с дву­мя типами интрафузальных мышечных волокон. Слева — аффе­рентные, справа — эфферентные нервные волокна (по Y.Korten, 1972).

импульсация, поступающая из мышцы, способна вызвать не только фазический, но и длительный тонический цент­ральный эффект. Этому, естественно, будут препятствовать как супраспинальное полисинаптическое торможение, так и торможение в первых звеньях тормозного устройства (Schmidt R., 1969; Сафьян В.И., 1976). Супраспинальные нис­ходящие тонические импульсы поступают по медленно проводящим кортико-руброспинальным волокнам, по ре-тикуло- и вестибулоспинальным путям.

Когда прекращаются облегчающие влияния из ретику­лярной формации ствола и ослабевают рефлексы на растя­жение, наступает атония спинального центра (Сорох-тин Т.Н., 1961). С прекращением же угнетающих влияний на эти рефлексы последние усиливаются, и тонус нарастает. Это происходит как за счет импульсов а-малых клеток, так и веретена: чертик из табакерки выскакивает не только по­тому, что снята крышка, но и потому, что действует внутрен­няя пружинка.

Изменения тонуса протекают различно в мышцах пре­имущественно белых и преимущественно красных.

Существование двух типов мышц известно со времени L.Ranvier (1880). Одиночное сокращение в красной мышце продолжается в течение 100-120 мс, тогда как в белой — 20-60 мс. Сокращение в красных мышцах в энергетическом отношении экономичнее, чем в белых.

У амфибий такое деление весьма обоснованно: сущест­вуют красные волокна, специализированные на медленной тонической деятельности, и белые волокна, специализиро­ванные на фазной деятельности. У человека такое деление имеет значение относительное. При его рождении все во-



Ортопедическая неврология. Синдромология


 

 
Таблица 3.1 Типы волокон скелетных мышц (по R.Close, 1972; Г.Н.Крыжановскому и соавт., 1974)
Динамические свойства Быстрые фазные Медленные фазные
Микроскопическая характеристика Белые Красные
Диаметр волокна Больший Меньший
Нервномышечное соединение:    
а) терминали Большие Малые
б) постсинаптические складки Сложные Простые
Активность окислительных ферментов Низкая Высокая
Содержание миоглобина Низкое Высокое
Гликолитическая активность Высокая Низкая
Содержание гликогена Высокое Низкое
Активность митохондриальной АТФ-азы Низкая Высокая
Активность миофибриллярной АТФ-азы Высокая Низкая
Устойчивость миофибриллярной АТФ-азы к изменениям рН Кислолабильные, щелочноустойчивые Кислотоустойчивые, щелочелабильные

локна медленные. Дифференциация начинается в первые недели жизни. У взрослого можно говорить о преобладании преимущественно белых мышц и о наличии отдельных красных, например камбаловидных, и смешанных. Крас­ный цвет обусловлен миоглобином, кровью сети капилля­ров и митохондриями, повышающими оптическую плот­ность. В такой мышце ритмическая стимуляция вызывает локальную деполяризацию — развиваются медленные на­пряжение и расслабление. Малые низкопороговые мото­нейроны, иннервирующие медленные мышцы, работают уже при небольшом возбуждающем влиянии. Они способ­ны к длительной ацетилхолиновой контрактуре (Kuffer S. et al, 1953; Сагдеев СБ., 1971) и обеспечивают слабое, но ма­лоутомительное сокращение. В белой мышце даже одиноч­ный импульс вызывает распространяющийся потенциал действия и сокращение. Для ее неэкономных волокон тре­буется большая частота раздражения. S.Cooper, J.Eccles (1930) установили в экспериментах на кошках, что при рит­мической стимуляции слияние сокращений для камбало-видной мышцы составляет 30 импульсов в секунду, а для ик­роножной — 100. Согласно H.Henneman, C.Olson (1965), ча­стоты раздражения, при которых наступает максимальное напряжение, т.е. гладкий тетанус, в медленной и быстрой мышце соответственно составляют 5-10 и 150 Гц. Я.М.Коц (1972) рекомендует определять характер мышцы человека (медленная или быстрая) с помощью слабого тетанического электрического раздражения. Время от начала движения до момента достижения максимальной амплитуды, т.е. период восходящей части кривой сокращения, равно как и время полурасслабления, указывает на «медлительность» или «бы­строту» мышцы. Разделение мышечных волокон на 3 типа: А, В и С основывается на результатах исследований H.A.Padykula и его сотрудников (1958, 1962). Такое разделе­ние удалось благодаря окраске волокон на гликоген, АТФ-азу, неспецифическую эстеразу и, в особенности, на сукци-натдегидрогеназу (СДГ). В темном спектре волокон крас­ных мышц преобладает аэробный гликолиз, метаболизм, зависящий от кислорода, при низкой способности расщеп­лять гликоген и высоком липидном обмене. В светлом спе­ктре волокон в белых мышцах преобладает анаэробный гли­колиз. В медленной мышце весьма высока вязкость. Это


препятствует проявлению силы при больших скоростях со­кращения. Соответствующая кривая сила-скорость (Ward А., 1938; Wells J., 1965) показывает, что в такой мыш­це с нарастанием скорости сокращения сила падает значи­тельнее, чем в быстрой мышце.

Схематические различия красных и белых мышц пред­ставлены в табл. 3.1.

Кроме фазных, в мышце имеются и тонические волокна. Иннервация красных мышц осуществляется тонкими нерв­ными волокнами, что было установлено еще в 1901 г. (Hay J.). Значительно позже, когда была проведена рубри-фикация и нервных волокон — А, В, С (ErlangerJ., Gasser H., 1937), выяснилось, что красные мышечные волокна иннер-вируются а-малыми нервными волокнами (Eccles J., 1937, 1957). Чем толще нервное волокно, т.е. чем больше скорость проведения импульсов, тем больше скорость сокращения соответствующей мышцы (Bessou P. et al., 1963).

В а-малых нейронах, согласно D.Kernell (1966), больше общее сопротивление мембраны. Это означает, что под дей­ствием одних и тех же токов в них тоническая возбудимость больше, чем в крупных нейронах. У красных мышц, напри­мер камбаловидной, более низкий порог рефлекса на растя­жение, чем у белых, т.е. у них более низкий порог на раздра­жение веретен. У спинальных животных активация мото­нейронов медленных мышц вызывается легче, чем актива­ция быстрых. Она происходит даже при раздражении аффе-рентов соседних мышц (Eccles J., Eccles R., 1957). Удецереб-рированного животного красная камбаловидная мышца в ответ на растяжение дает напряжение, равное 90% своей максимальной тетанической активности, а икроножная — лишь 10% (Denny-Brown D., 1929).

Известно, что в скелетной мышце имеются не только ра­бочие экстрафузальные волокна, обеспечивающие движе­ние и позу, но и интрафузальные волокна веретен, управля­ющие частотой их импульсного разряда. Эти последние, считавшиеся медленными, тоже оказались неоднородными: они бывают быстрыми и медленными (Smith К., 1966; Diete-Spiff К., 1967). Механическая реакция на небольшое напря­жение быстрого интрафузального волокна млекопитающе­го сводится к значительному противодействию, а реакция медленного волокна выражается в смещении и медленном


Глава III. Методики вертеброневрологического обследования



 


восстановлении длины. Речь идет о поведении веретена с эластической сумкой, соединенной последовательно с весьма вязкой средой. Также и на тетаническое электриче­ское раздражение медленное интрафузальное волокно отве­чает сокращением и расслаблением более медленным, чем быстрое интрафузальное. В веретенах выявляются и волок­на с ядерной сумкой (ЯС) и с ядерной цепочкой (ЯЦ). Они различаются по длине лишь в крупных мышцах конечнос­тей: около 7,5 мм в ЯС- и около 4 мм в ЯЦ-волокнах. После деафферентации ЯЦ-мышечные волокна веретен атрофи­руются, причем совершенно так же, как обычные экстрафу-зальные волокна. Следовательно, эти элементы рецепторов обладают и моторной иннервацией, которой не обладают никакие другие типы рецепторов.

Что касается моторной иннервации медленных и быст­рых интрафузальных волокон, то еще Cipollone (1897-1898) утверждал, что сокращение интрафузальных мышечных во­локон происходит под влиянием идущих к ним нервных им­пульсов, а не внешнего давления на капсулу. Вследствие же сокращения интрафузальных мышечных волокон, распола­гающихся в полярных частях веретен, последние и приходят в состояние возбуждения. Автор наблюдал дегенерацию тонких миелиновых волокон, направляющихся в составе передних корешков к интрафузальным мышечным волок­нам. Здесь они заканчиваются кустовидно или концевыми пластинками. Особенностью расположения нервных воло­кон в икроножной мышце является малокалиберность и рассеянность пучков (Абдуллаев М.С., 1960). Камбаловид-ная мышца богата кислыми митохондриальными фермен­тами, сукцинатдегидрогеназой, а икроножная — фосфори-лазой. При блокировании нервно-мышечной передачи трехглавой мышцы голени сублетальными дозами ботули-нического токсина камбаловидная мышца оправляется от пареза быстрее, чем икроножная. В последней гистологиче­ские изменения в нервно-мышечных окончаниях остаются на несколько месяцев. Она надолго лишается окраски на фосфорилазу, тогда как камбаловидная реагирует на первых порах даже быстрее, чем в норме (Duchen L., 1970). Импуль­сы у-волокон предшествуют двигательным импульсам а-толстых волокон. Классические эксперименты L.Lexel (1945) показали, что такое раздражение тонких миелиновых у-волокон и сокращение интрафузальных волокон вызыва­ет разряд в задних корешках. R.Granit (1973) допускает, что медленно нарастающее интрафузальное сокращение связа­но с активацией у-кустовидных окончаний. Мышечные ве­ретена являются сенсомоторными регуляторами, и эта реак­ция, видимо, осуществляется дифференцированно через медленные и быстрые волокна.

Каким образом под влиянием нервных импульсов в са­мой мышце реализуется процесс сокращения?

Как следует из приведенной выше функциональной мо­дели скелетной мышцы, ее соединительнотканные структу­ры находятся в состоянии определенного растяжения, вну­тримышечного давления. С приходом нервного импульса к имеющемуся напряжению прибавляется механическое напряжение в зависимости от количества преобразованной биохимической энергии в механическую.

Известны три формы мышечного сокращения: 1) изомет­рическая, когда мышца сохраняет свою длину; 2) концентри­ческая или миометрическая, изотоническая, с укорочением, выполнением положительной работы, в условиях, когда


внешняя нагрузка меньше напряжения мышцы; 3) эксцент­рическая или плиометрическая, когда мышца удлиняется, т.е. выполняется отрицательная работа, внешняя нагрузка больше напряжения мышцы, при этом чем больше вытянута мышца, тем менее она удлиняется при увеличении груза. Ча­ще имеет место смешанная форма — ауксотоническая, при­чем фаза напряжения короче фазы расслабления приблизи­тельно вдвое. Демпфирование (глушение за счет потери энергии) выражено резко в сократительных элементах и сла­бо—в пассивно упругих. Что касается прочности связок и сухожилий, то она зависит от скорости их растягивания: чем выше эта скорость, тем больше нагрузка, требуемая для их разрыва. При растягивании целой мышцы наибольшее со­противление оказывают соединительнотканные элементы.

Эти механизмы срабатывают при повышении тонуса всей мышцы. Они важны для понимания преходящего и ус­тойчивого гипертонуса, контрактуры и отдельных участков мышцы.

На первых порах представления о мышечных уплотне­ниях складывались в понятиях коллоидной химии. Позднее стадии затвердения понимались как изменения коллоидов мышечного белка, переход от золя к гелю с консистенцией отвердевшего студня (миогелоз Schade Н., 1920; Lange М., 1931). Хотя оба автора описали эти образования независимо друг от друга, они дали общую оценку обнаруженным зонам мышечной резистентности. С помощью специального скле­рометра Н.Schade установил, что в норме различные мыш­цы отличаются по степени их плотности не более чем на 10%, тогда как в зонах миогелоза — до 50%. Уплотнения ос­тавались и после новокаинизации и даже после смерти больных, отчетливо пальпируясь до наступления трупного окоченения. М.Lange пытался воспроизводить миогелозы в эксперименте путем стимуляции мышц бедра кролика и при местном замораживании. H.Strauss (1928) вслед за Гольдшейдером считал, что изменения эти связаны с холо­дом косвенно: холод вызывает вазомоторные сдвиги, ане­мию, затем венозный стаз. A.Schmidt (1910) определял в по­раженных кусочках мышц повышенное кровенаполнение. Вследствие этого меняется и химизм мышцы. В ней накап­ливаются недоокисленные продукты, отмечается ацидоз (Good M., 1941, 1958), повышается содержание сукцинатде-гидрогеназы (Веселовский В. П., 1978; Хабиров Ф.А., 1991), повышается содержание хлоридов с относительным сниже­нием содержания калия (Brendstrup Я. etai, 1957), накапли­ваются кинины (Kellenneyer F., 1968).

В условиях гипоксии происходит раздражение тучных клеток соединительной ткани, усиливается выделение ими гистамина и, следовательно, повышается проницаемость капилляров. Перицеллюлярные пространства увеличивают­ся. Тучные клетки выделяют гепарин, нейтрализующий ги-алуронидазу, — накапливаются гиалуроновые кислоты (Drennan Y., 1951).

Видимо, существуют различные стадии развития и в са­мой группе «миогелозов». Нам приходилось наблюдать их переход в плотные образования бугристой консистенции, не поддающиеся разминанию. В таких случаях, наоборот, боли после массажа усиливались, что вполне понятно при обызвествлении очага миогелоза. Возможность перехода миогелоза в оссифицирующий миозит, как нам представля­ется, говорит в пользу того, что введение гипертонического раствора (видимо, не только натрия, но и кальция) патоло-


74 Ортопедическая неврология. Синдромология


Рис. 3.18.Биоптаты из зон болезненного уплотнения, окраска ге­матоксилин-эозином: а — лестничная мышца, увеличение количе­ства мышечных ядер (1), расщепление на отдельные диски (2); б и в — икроножная мышца больного остеохондрозом: 1 — участки фиброза перимизия; 2 — жировое замещение; 3 — группы и оди­ночные атрофированные волокна; 4 — участки воспаления вокруг некротизированных волокон; 5 — группа атрофированных волокон на площади целого фасцикула; 6 — дефицит волокон II типа.

гически видоизменяет мышцу, нарушает состояние ее ре­цепторов и создает в ней триггерные зоны (см. ниже данные об экспериментальном формировании склеротомныхболей).

Миофиброз, возникающий по тем же причинам, являет­ся наиболее частым вариантом завершающей стадии разви­тия дистрофического процесса. Умеренная болезненность возникает при растяжении и меньше — при пальпации мышцы. Прощупываются плотные тяжи продолговатой формы. Тяжистость определяется во всей толще мышцы. Ак­тивное расслабление затруднено. Т.к. снижается эластич­ность, в отдельных случаях несколько ограничивается объем движений. Атрофии и снижения силы нет, т.к. необратимые изменения в одних фибриллах компенсируются гипертро­фией других. Возможно осложнение надрывом мышц. В от­личие от периартрозов, болезненность тканей незначитель­на, она возникает не при всех движениях в суставе.

При миогелозах M.Lange (I931) находил разрастание со­единительной ткани, дегенерацию и разрежение мышечной.


G.Glogowski, J.Wollraff(1951) проводили биопсию у 20 боль­ных с миогелозами и выявили восковидную дегенерацию мышечных волокон, их деструкцию, увеличение количества ядер, скопления их, жировую инфильтрацию. Авторы ут­верждали, что это определенная клинико-морфологическая форма. Различные результаты морфологических исследова­ний определяются, по-видимому, не только выбором участ­ка мышцы для биопсии, не только методикой исследования, но и стадией развития мышечных изменений.

В нашей клинике были подвергнуты гистологическому исследованию кусочки девяти передних лестничных мышц больных со скаленус-синдромом. Парафиновые срезы окра­шивали гематоксилин-эозином и по ван Гизону (Кипер-вас И.П., Зайцева О.Л., 1967). При пальпации эти мышцы были плотны, болезненны и увеличены. Это подтверждалось и на операционном столе. Как показало гистологическое ис­следование, среди нормальной мышечной ткани имелись мышечные пучки неравномерной толщины и окраски. Часть их была гипертрофирована, часть — атрофична. Некоторые волокна были набухшими, гомогенными, без поперечной исчерченности, иногда со стертым фибриллярным строени­ем. В ряде волокон, наоборот, миофибриллы были видны от­четливо, но расщеплены по длине с образованием узких ще­лей между отдельными пучками их. Встречались и волокна с явлениями очагового миолиза, глыбчатого и зернистого распада. В некоторых волокнах определялось поперечное расщепление на отдельные диски с увеличением количества мышечных ядер, в некоторых — вакуольная дистрофия.

В участках измененных мышечных волокон соедини­тельная ткань была разрыхлена, отечна, иногда с увеличе­нием количества клеточных элементов и коллагеновых во­локон, местами с переходом в фиброз и склероз. В таких участках мышечные волокна были раздвинуты. Соедини­тельная ткань, богатая клеточными элементами, гистиоци­тами, фибробластами и лимфоидными элементами, иногда имела рубцовый вид. В некоторых сосудах эндотелий был набухший, иногда пролиферирующий. Отмечалось утолще­ние стенок сосудов. В мышечных волокнах этих участков обнаруживались выраженные явления атрофии и дистро­фии, в некоторых из них встречались многочисленные ядра и клетки (рис. 3.18). Подобные изменения были описаны за­тем и H.Tichy, K.Seidel (1969). Таким образом, вторая (орга­ническая) стадия мышечно-болевого синдрома связана с различными дистрофическими изменениями: зернистый и глыбчатый распад, очаговый миолиз, дисковидный рас­пад мышечных волокон, вакуольная дистрофия и пр., с пе­реходом в фиброз и склероз. Биопсийный материал, взятый из болезненных мышечных уплотнений икроножной мыш­цы у 23 больных вертеброгенной люмбоишиальгией, также показал, что вслед за серозным пропитыванием наступают продуктивно-пролиферативные изменения. Обнаружива­лись группы одиночных атрофированных мышечных воло­кон, волокна-мишени, фиброз эндомизия, а в поздних ста­диях — более грубый фиброз (Попелянский Я.Ю., Хаби-ровФ.А., 1993). Укороченная мышца теряет уровень диффе-ренцировки, происходит сдвиг в составе «медленных» и «быстрых» волокон (рис. 3.19).

J.Travell и D.Simons (1983) считают укорочение специфиче­ским фактором активации курковых зон мышцы: длительное укорочение, например во сне, или внезапное, например при расслаблении укороченного агониста хлорэтилом. Огра-


Глава ILL Методики вертеброневрологического обследования



 


ничение функции характерно как для активного, так и для ла­тентного пунктов, спонтанная же боль — только для первого.

Белки мышечно-сухожильной ткани и болезненных мы­шечных узелков — зон нейроостеофиброза становятся ауто-антигенами (Tichy Н., Seidel К., 1985; Попелянский Я.Ю., Ве-селовская О.И., 1985).

Перед тем как указать на малотравматические современ­ные методики оценки состояния мышц при болевых синд­ромах, соответствующие данные целесообразно сопоста­вить с результатами экспериментальных исследований на животных.

С.С.Вайль (1967) вызвал перенапряжение мышц, вынуж­дая крыс плавать до изнеможения. При окраске мышц этих животных гематоксилин-эозином в поляризованном свете мышечные волокна определялись слегка извилистыми, сар­коплазма образовывала горбовидные выбухания. В соответст­вующих участках анизотропные диски сливались, образуя сплошные двояколучепреломляющие фрагменты, что, по мнению автора, соответствует выраженным контрактурам. Подобные изменения находил наш сотрудник В.П.Веселов-ский после такого же типа перенапряжения мышц у подопыт­ных животных. Другой группе крыс в латеральную головку икроножной мышцы вводилось 0,5 мл 10% раствора хлорис­того кальция. На втором месяце опыта в толще икроножной мышцы, чаще в месте начала обеих головок, выявлялась бо­лезненность — животные реагировали на их пальпацию более бурно, чем на пальпацию других зон. Начиная с четвертого месяца, в медиальной головке мышцы обнаруживались по­стоянные участки уплотнения, и на той же конечности опре­делялась кожная гипотермия. Здесь же на электромиограмме регистрировалось удлинение периода «успокоения» в ответ на погружение игольчатого электрода в мышцу. Выявлялась так­же нейрогуморальная декомпенсация в системе ацетилхолин-холинэстераза (гиперацетилхолинемия при снижении актив­ности холинэстеразы), увеличивалась активность окисли­тельно-восстановительных ферментов, лактатдегидрогеназы и сукцинатдегидрогеназы, снижалась активность ДПН-диа-форазы (коэнзимы I и II, динуклеатиды фосфатные). Нару­шения в указанных системах находились в прямой зависимо­сти от выраженности уплотнений в мышцах.

В свете изложенного представляют интерес результаты исследований наших учеников по изучению обсуждаемой патологии мышц. В альгической фазе, когда объективные симптомы ограничиваются почти исключительно местными изменениями тонуса мышцы, интересные показатели неред­ко дает игольчатая электромиография. Обнаруживаются усиление и удлинение периода биоэлектрической активнос­ти погружения и усиление активности покоя. Появляется залпообразная активность покоя в ограниченных участках гипертонуса. В этот же период улавливаются и сдвиги ткане­вого клиренса (процента снижения радиоактивности в ми­нуту) при введении изотопа в пораженную мышцу (Аляби-на Н.Е., Заславский Е.С., Ходич Т.Г. и соавш., 1973).

Что касается нейродистрофических влияний на мышцу и соединительную ткань, то на первых порах предполага­лось, что они адресуются к сосудистому аппарату и реализу­ются через вазомоторику (Сеченов И.М., 1866; Бехтерев М., 1925; Brunning L., 1952). Одновременно на разных этапах


изучения нейротрофики накапливались факты в пользу не­посредственных нервно-трофических влияний.

В лаборатории С.П.Боткина его сотрудники С.В.Левашов (1880), а затем И.П.Павлов (1882,1883) наблюдали усиление функциональной активности стенки сосудов задней лапы и сердечной мышцы собаки при раздражении определенных нервов. Это в последующем (1892) позволило И.П.Павлову поддержать представление S.Magandie (1834), Samuel'a (1860) о наличии специальных трофических нервов. Эту ре­флекторную функцию стали приписывать всей вегетативной или только симпатической (Орбели Л.А., 1938), или сомати­ческой нервной системе1. В последнем случае одни авторы отдавали преимущество чувствительной (Wybum-Mason R., 1950; Грацианская A.M., 1956; Григорьева Т.А., 1959; Лебедин­ский А.В., Нахильницкая З.Н., 1964), другие — двигательной иннервации (Gutman Е. et al, 1956, 1962; Гник П., 1958; Hollos G. et al., 1960; Felix W., 1962). Л.А.Орбели (1938) гово­рил о тономоторной функции симпатикуса, создающей поч­ву для действий соматических тономоторных нервов. М.Р.Могендович отождествляет эту концепцию с представ­лением R.Granit (1957) о у-эфферентах.

В настоящее время большинство авторов признает, что тро­фическая функция осуществляется всей нервной системой, а нарушение трофики может возникнуть при повреждении лю­бого ее отдела (Сперанский А.Д., 1936, 1952; Баяндуров Б. И., 1949; Коштоянц Х.С, 1951; Боровский М.Л., 1952, 1957; Зай-ко Н.Н., 1954; Бентелев A.M., Надежкин Л.В., 1959; Волко­ва О.В., 1970; Швалев В.К, 1971). Прямые трофические влия­ния дополняются влиянием симпатикуса на сосуды, питающие ткань через адренергические волокна (Говырин В.Н., 1967).

Эти общие теоретические представления о нейродистро-фии позволили глубже оценить новые факты, полученные благодаря внедрению внутриклеточной регистрации элект­рических потенциалов, гистохимического и электронно-микроскопического методов, осмыслить изменения в клет­ках на молекулярном и субклеточном уровнях. Общие син­тетического характера концепции не препятствовали выяс­нению интимных механизмов реализации трофических функций. В частности, продолжается раздельное изучение возбуждающего действия нерва, т.е. приводящего к мышеч­ному сокращению, и трофического.


1 Важным этапом изучения вегетативной нервной системы был классический эксперимент Гинецинского-Орбели на нервно-мышеч­ном препарате: раздражение симпатических связей предотвращало трофическое истощение мышцы. Экспериментальное оправдание концепции Л.А.Орбели (1939) об адаптационно-трофической функции симпатической нервной системы.



Ортопедическая неврология. Синдромология


 


Независимость трофического влияния нерва на мышцу от возбуждающих двигательных импульсов установлена в опытах инактивации мышц с помощью тенотомии, а так­же фиксации суставов (Chor Н., Dolkart R., 1936; Katpati G., 1968), изолирования отдела спинного мозга (Towwer, 1937), новокаиновых блокад нервного ствола (Gutmann E., 1962).

Электронно-микроскопические исследования показали уменьшение диаметра мышечных миофибрилл при всех ви­дах атрофии (Wechsler W., 1966). Как в денервированной, так и в тенотомированной мышце, кроме того, снижается активность фосфорилирования из-за замедления фермен-тативно-фосфорилазной и фосфогексокиназной деятель­ности (Телепиева В.И., 1955). Нейрогенный вариант атро­фии отличается от атрофии при инактивации большим тем­пом потери веса и более быстрым уменьшением диаметра мышечных волокон (Muscatello V., Patriarca P., 1968); наблю­дается более резкое падение концентрации карнозина и креатина и более значительное увеличение содержания глутаминовой кислоты, чем при тенотомии (Юдаев НА. и др., 1953). Свободные Н-группы, появляющиеся в дегене-рированной мышце, содержатся в меньшем количестве в те­нотомированной (Попова М.Ф., 1956). Существенные раз­личия обнаружены в содержании нуклеиновых кислот: зна­чительное повышение уровня ДНК, отмечаемое в денерви­рованной мышце, не происходит при тенотомии, что связы­вают с различиями в числе мышечных ядер (Hollos J. et al., 1960; Gutmann К, 1961, 1962). Содержание РНК в первые дни понижается больше в денервированной мышце, чем в тенотомированной (Hobos G. etal., 1960). Специфическим для денервированной мышцы является повышение ее чув­ствительности к медиаторам, особенно к ацетилхолину (Кеннон У., Розенблют Б., 1951), снижение уровня дыхания (Никитин В.Н. и др., 1956), повышение содержания воды, что не наблюдается в тенотомированных мышцах.

Регулярная электростимуляция обездвиженных мышц предохраняет их от атрофии и поддерживает нормальную мышечную силу (Кеннон У., Розенблют А., 1951). Электроте­рапия денервированных мышц задерживает атрофию на оп­ределенный период времени, сила сокращения при этом уменьшается, повышается чувствительность к ацетилхоли­ну (Гинецинский А.Г., 1956), содержание ДНК не меняется (Gutmann Z, 1961). Авторы оценивают это как доказательст­во наличия специфического трофического влияния нерва.

Стало ясно, что нервная система регулирует метаболизм мышцы, воздействует на анаболические процессы. Трофи­ческая функция нерва заключается в усилении послефунк-циональных восстановительных процессов. Об этом можно судить по тому, что в денервированной мышце после ее раз­дражения не усиливается процесс ресинтеза гликогена, не повышается синтез белков, не наблюдается усиления утилизации безбелкового азота и повышения потребления кислорода, как это происходит после раздражения нормаль­ной мышцы.

Согласно гипотезе Е.Gutmann (1961), трофическое влия­ние нерва осуществляется путем транспортировки с током аксоплазмы определенного вещества, вырабатываемого ней­роном (см. главу 8).

Р.П.Женевская (1974) изучала пластические процессы мышечной ткани в условиях регенерации нерва в период до начала сократительной реакции мышцы в ответ на раздра­жение нерва. Установив факт трофического влияния нерва


на денервированную мышцу в тот период, когда в процессе регенерации еще не сформирован мионевральный синапс, автор приходит к следующему заключению: нерв в данных условиях, когда невозможна передача возбуждающего им­пульса (еще отсутствует мионевральный синапс), не функ­ционирует как компонент нервной системы. Следователь­но, обнаруженное трофическое влияние осуществляется са­мой тканью двигательного нерва.

При оценке результатов собственных экспериментов ав­тор вслед за другими подтвердила, что трофическое влияние нервной системы заключается в передаче иннервируемым тканям нервно-трофических метаболитов, действующих по типу веществ, осуществляющих эмбриональную индукцию.

Обнаруженный исследователем факт задержки роста ау-тотрансплантатов и реиннервированных мышц в отсутст­вии проприоцепции дает основание считать, что подача нервно-трофических метаболитов мотонейронам контро­лируется системой обратных связей по афферентным пу­тям, возможно, также с помощью передачи специфических веществ от мышечной ткани. Сейчас уже известно, что дви­жение веществ по нерву осуществляется в обоих направле­ниях: обнаружен ток веществ не только от тела нейрона к периферии, но и от иннервируемой ткани к телу нейрона по микротрубочкам (Weiss J., 1969). Эти сведения связаны с довольно детально разработанным учением об аксоплаз-матическом токе.

Таким образом, существуют данные о роли афферентных путей из мышцы, обратных связей, регулирующих подачу нервно-трофических метаболитов мотонейронам.

В свете всего изложенного выше состояние кровоснаб­жения мышцы, ее обеспеченность кислородом приобрета­ют новое значение. Отмеченная стадийность мышечно-тро-фических и нейродистрофических процессов заставляет нас вспомнить о стадийности сосудистых сдвигов в тех же тка­нях.

Известно, что первыми при ишемии страдают нервно-мышечные аппараты (Ходос Х.Г., 1940) при одновременной высокой чувствительности и сосудистых рецепторов к кис­лородному голоданию (Долго-Сабуров Б.А., 1956; Куприя­нов В.В., 1955 и др.).

Некоторые сведения о нейродистрофических сдвигах в условиях ишемизации тканей дали следующие экспери­менты.

С.С.Трач и А.Р.Радзиевский (1970) перерезали артери­альные магистрали и вводили в мышцы АТФ. При этом воз­никавшие атрофии были значительно меньше, чем при пе­ререзке сосудов без введения АТФ. То же касалось и измене­ний в нервных структурах. Если без введения АТФ ишеми-зация ведет к распаду нервных окончаний вплоть до их фрагментирования, при введении АТФ грубых реактивно-дистрофических нарушений не было. Отмечались лишь ре­активно-регенеративные изменения: вздутия и утолщения нервно-мышечных пластинок и разрастания шванновских структур. В саркоплазме вблизи нервно-мышечной плас­тинки уменьшалось количество митохондрий. Т.к. АТФ эф­фективен при введении его в ничтожно малых дозах, он действует на мышцу не непосредственно, а через нервно-мышечные приборы. В этой связи следует помнить осново­полагающие данные В.А.Энгельгарта (1939): миозин разла­гается АТФ, а последняя и ее ферменты делают миозиновые волокна более растяжимыми.


Глава III. Методики вертеброневрологического обследования 11


Как ни велика роль гипоксии в описанных дистрофичес­ких процессах в мышечных и фиброзных тканях, влияния ее самой по себе недостаточно для объяснения нейромио-и нейроостеофиброза. В поисках других механизмов этих процессов было обращено внимание на то, что они развер­тываются: а) не только в связи с микротравматизацией (роль статико-динамических перегрузок при остеохондрозе); б) не только в связи с вазомоторными нарушениями; в) не только в связи с эфферентными импульсами, следующими по по­врежденному корешку (роль компрессионных механизмов остеохондроза); г) не только в связи с эфферентными им­пульсами, следующими по здоровым нервным стволам из зон ирритации позвоночника и соответствующего квадранта тела (роль рефлекторных механизмов остеохондроза).

Было установлено, что тонические и нейродистрофичес-кие нарушения в мышечно-фиброзных тканях возникают нередко под влиянием ряда экзогенных факторов, обуслов­ливающих аутоиммунизацию. Антигенные свойства, «чуже-родность» могут приобрести не только ткани, формировав­шиеся изолированно от лимфоидной системы, как, напри­мер, выпавшие пульпозные ядра межпозвонковых дисков, но также, при определенных условиях, денатурированные белки любых тканей, в том числе мышечных и фиброзных периферических нервов.

Рассмотрение нейродистрофических изменений мышц невозможно без одновременного анализа соответствующих изменений их соединительнотканных элементов и соеди­нительной ткани вообще. Миофиброз и нейроостеофиб-роз — это в такой степени связанные звенья одной патоло­гической цепи, что можно считать целесообразным включе­ние в понятие нейроостеофиброза и явления миофиброза. Не удивительно, что и другие терминологические попытки совершаются в направлении подобных же обобщений — на­пример, миоэнтезиты... Перед тем как рассмотреть различ­ные стороны патогенеза не только мышечно-тонических, но и миофиброзных дистрофических процессов и, в частно­сти, их аутоиммунных механизмов, остановимся на некото­рых особенностях соединительной ткани вообще.

И.И.Мечников (1892) высказал важные взгляды о роли клеток соединительной ткани в формировании иммунитета. Эти идеи получили дальнейшее развитие в трудах А.А. Бого­мольца (1936) о системе соединительной ткани. Она несет опорно-трофическую функцию, состоит из клеток, межкле­точного аморфного вещества и волокнистых структур. Но­вообразование основного вещества соединительной ткани и ее коллагеновых волокон связано с жизнедеятельностью фибробластов. Биохимики установили сложную структуру главнейшего белка ткани волокнистых структур — коллаге­на. Гистохимия позволила более углубленно изучить группу коллагеновых заболеваний.

J.Nageott (1927, 1931), учитывая данные Эвальда о рас­творимости коллагена в слабокислой среде, а также способ­ность его выпадать из раствора в форме фибрилл под влия­нием солей, выдвинул биохимическую гипотезу образова­ния коллагена. Согласно этой гипотезе, растворимый кол­лаген образуется из некоего белка крови, а затем осаждается под влиянием солей в коллаген. Гистологи разделяют дан­ную концепцию, подчеркивая, что коллаген образуется из лреколлагена. Обе точки зрения примиряет А.А.Тустанов-ский (I960), установивший, что растворимый коллаген яв­ляется биохимическим предшественником коллагена,


и этот предшественник они совместно с В.И.Ореховичем (1952) назвали проколлагеном (не путать с преколлагеном биохимиков). Т.к. в фибриллогенезе участвуют коллагено-вые и неколлагеновые белки и мукополисахариды, коллаген рассматривают и как белково-мукополисахаридный ком­плекс (Jackson D. et ai, 1958). Морфологи, установив, что в коллагеногенезе первым этапом бывает преколлаген, сво­ими методами не могли решить, пропитывается ли коллаген растворимым коллагеном или, деградируя, замещается вто­рым, или превращается в него биохимически. По точному замечанию АА.Тустановского, «...биохимики не изучали то­го, что видели морфологи, а морфологи не видели того, что предлагали видеть биохимики» (1960, с. 8). Г.В.Орловская и АЛ.Зайдес (1956) показали, что аргирофильный прекол­лаген эмбриональной закладки, не обладая рентгенострук-турными особенностями коллагена, со временем приобре­тает их. Оказалось, что белковая основа коллагена — комби­нация двух белковых компонентов, один из которых — про-коллаген, другой — колластромин, который генетически связан с проколлагеном морфологов. Проколлаген и колла­стромин взаимодействуют по типу сочетания двух фаз: на­ружная фаза образована слоями проколлагена, внутрен­няя — нитями колластромина. В последних в дефинитив­ном коллагене сохраняется преколлаген как начальная фа­за. Наименьшая структура единиц, содержащая обе фазы, — первичная коллагеновая фибрилла диаметром 500-1000 А. Эта единица одновременно морфологическая (на электронном уровне) и биохимическая. Каждая фаза со­держит полисахариды, а колластроминовая — еще и глобу­лярные белки. Она занимает 80% свежего веса коллагена. Коллаген не идентичен волокну, он первичная коллагено­вая фибрилла, элемент коллагенового волокна, но уже явля­ется многофазной и многокомпонентной системой (Зай-десА.Л., 1960). Образование компонентов коллагена, спосо­бы их сочетания остаются в области биохимии. Образова­ние же коллагенового волокна — область фибриллогенеза. Коллагенообразование — стадия волокнообразования. Эла­стичные волокна также состоят из коллагеновых, только очень тонких, фибрилл. В них также имеются мукополиса­хариды. Кроме того, из них выделен белок эластин.

Применительно к остеохондрозу важно, что образование коллагена нарушается при С-авитаминозе. McCormick (1954) подчеркивает, что при этом нарушается синтез колла­гена в тканях диска, т.е. наступает дистрофия фиброзного кольца. Потребление оптимального количества витамина С является фактором сохранения целостности межпозвон­кового диска (Greenwood J., 1964). В.Б.Киселев (1971) у боль­ных остеохондрозом выявил С-витаминную недостаточ­ность, характерную для них во все сезоны года. Недостаток аскорбиновой кислоты влияет на выработку проколлагена (Орехович В.Н., 1952) и полисахаридов, участвующих в его формировании.

Важными для регуляции коллагенообразования и других функций соединительной ткани являются гормональные факторы, в первую очередь состояние системы гипофиз — кора надпочечников. Введение АКТГ, глюкокортикоидов, гормона щитовидной железы угнетает размножение фиб­робластов, задерживает развитие грануляционной ткани. Противоположное действие оказывает соматотропный гор­мон. Тестостерон стимулирует образование основного ве­щества и способствует аккумуляции в нем серы.


78 Ортопедическая неврология. Синдромология


В старости известны атрофические изменения коллаге-новых волокон при увеличении эластина, в частности в ко­же. В основном веществе соединительной ткани количество кислых мукополисахаридов уменьшается, накапливаются мукопротеиды, нарушаются процессы диффузии и ухудша­ется питание клеток, прогрессируют дистрофические про­цессы. Такие изменения А.В.Мельченко и соавт. (1965) от­мечали и в дистрофичных межпозвонковых дисках.

В патологических условиях при бесклеточных склерозах (Абрикосов А.И., Струков А. И., 1953, 1954) вместо оформ­ленных преколлагеновых волокон образуются аргирофиль-ные белково-полисахаридные массы, на которых неупоря­доченно откладывается проколлаген. При разрастании со­единительной ткани с участием клеток преколлагеновые ар-гирофильные волокна претерпевают преобразование по эм­бриональному типу. При коллагеновых болезнях наблюда­ется дезорганизация коллагеновых волокон.

Под разрешающим воздействием экзогенных факторов сами по себе денатурированные белки соединительной тка­ни могут стать внутренним источником реактивных, в част­ности, аутоиммунных процессов. Аллергический же фак­тор, как показали О.Я.Острый и З.И.Собиева (1961), А.И.Зайко (1970) и др., является одним из компонентов не-врогенной дистрофии. Другими словами, компонентом нейроостеофиброза являются и аутоиммунные реакции, включающиеся в нейрогенный дистрофический процесс при остеохондрозе. Этот процесс, таким образом, зависит и от особенностей взаимодействия аутоантигенов с соответ­ствующими антителами.

А.Д.Адо (1970) классифицирует антитела по трем катего­риям: 1) агрессивные (с цитотоксическим повреждающим действием на клетки и ткани); 2) аутоантитела-свидетели (без агрессивных свойств), наличие которых выявляется се­рологическими реакциями и указывает на факт воздействия аутоантигенов; 3) защитные аутоантитела, способствующие выздоровлению организма от аутоиммунного заболевания и переходу аутосенсибилизации в состояние резистентнос­ти к данному тканевому раздражителю. Они также транс­портируют к местам выделения и обезвреживают постоянно возникающие продукты распада клеток совершенно здоро­вого организма.








Дата добавления: 2015-04-07; просмотров: 4026;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.079 сек.