Переменный ток 1 страница

Переменный ток вызывает у рыбы последовательно минимальную реакцию, возбуждение, угнетение и электрошок. Первые две и последняя реакции проявляются в общем так же, как и при действии постоянного тока.

Реакция угнетения характеризуется тем, что движение рыбы парализуется, дыхание замедляется, рыба как бы оказывается в состоянии полупаралича. После прекращения действия тока рыба приходит в нормальное состояние.

Особенности действия электрического тока на рыбу определяют область применения электрических полей в рыболовстве. Так, реакцию возбуждения используют в электрорыбозаградителях и в других случаях, когда необходимо отпугнуть рыбу или увеличить ее двигательную активность.

Анодная реакция служит для направления рыбы к залавливающему устройству с расстояний не более 5-6 м. Остальные реакции обычно используют для уменьшения двигательной активности рыбы, а также ухода рыбы из зоны облова.

Действие электрических полей на рыбу оценивают действительным напряжением тела рыбы, равным разности потенциалов между головой и хвостом рыбы. Пороговые значения реакций рыб, выраженные действительным напряжением тела рыбы, изменяются в основном от 1 до 10 В.

Действие электрического поля на рыбу тем сильнее, чем больше длина рыбы. Эта особенность действия электрического поля служит предпосылкой организации селективного лова преимущественно крупной рыбы.

В рыболовстве в основном применяют двухэлектродные и многоэлектродные системы линейно расположенных электродов. Размеры зоны управляющего действия электрического поля двух-электродной системы редко превышают 6-8 м. Также невелики поперечные размеры зоны действия системы линейно расположенных электродов. Их продольные размеры достигают 100 м и более и ограничены в основном расходом энергии на образование поля.

В морских водоемах, где электрическая проводимость воды высокая, на образование электрического поля затрачивается большая мощность. Так, при лове рыбонасосом с применением света и электрического тока мощность электроагрегата достигает 20-30 кВт, а при электротраловом лове лишь применение импульсного тока уменьшает потребляемую мощность до 50- 100 кВт.

В пресноводных водоемах необходимая мощность агрегатов для электролова редко превышает 10-15 кВт.

 

4.5 Электрические явления в биологических системах

В ходе изучения биологических клеток было давно замечено, что о какой бы клетке ни шла речь, на мембране или оболочке, окружающей клетку, наблюдаются электрические явления. При сокращении мышц ткани регистрируются импульсы электрического напряжения. Отдельные мышцы легко возбуждаются электрическим током, в результате чего наблюдаются их сокращения. При измерениях, проводимых на кожном покрове, обнаруживаются электрические заряды, которые создают своеобразный потенциальный рельеф. Оценивая его, можно получить информацию о состоянии органов и систем, имеющих связь с данной локальной зоной. Соответственно, воздействием электрического тока на эти зоны можно осуществлять лечебные воздействия.

Регистрируемые электрические потенциалы можно разделить на квазипостоянные, которые мало меняются в течение конечных промежутков времени, и переменные. Переменные, как правило, имеют форму импульсов, параметры которых характеризуют работу определенных органов, функциональных систем или подсистем регулирования.

При выяснении распределения потенциалов на поверхности тела от расположенного в пространстве биоэлектрического генератора электрической энергии широко используется представление о нем как об электрическом диполе. Под электрическим диполем понимают совокупность двух равных по абсолютной величине разноименных точечных зарядов q, находящихся на некотором расстоянии друг от друга.

Основной характеристикой диполя является его дипольный момент

P = ql

где Р - вектор дипольного момента;

q - значение заряда;

l - расстояние между зарядами.

При функционировании биологического организма одновременно работает много элементарных биогенераторов электрической энергии. Поэтому в точках или зонах, в которых производится определение электрических величин, будет присутствовать векторная равнодействующая потенциала, значение которой зависит от количества биоэлектрогенераторов, их взаимного расположения, электрических параметров среды между биоэлектрогенераторами и местом, в котором определяется потенциал. Эта картина достаточно сложная и плохо поддающаяся аналитическому анализу. Поэтому понятие электрического диполя представляет интерес только для объяснения причин появления электрического потенциала и его изменений в течение времени. Исходя из него, разработана теория, на которой базируются методы исследования электрического поля сердца и другие электрофизические методы исследований.

Следует отметить, что диполи, если они в действительности существуют в биологическом организме, окружены средой, удельное сопротивление которой существенно вариабельно, зависит от температуры и распределено неоднородно около источника электрического поля.

Разность потенциалов между отдельными зонами приводит к появлению между ними электрического тока, который дополнительно изменяет всю электрическую картину. К тому же, в зависимости от температуры и влажности внешней среды, температуры организма, от воздействия различных энергетических и психических факторов, электрическое сопротивление участков биологической ткани, а возможно и способность к генерации электрических зарядов существенно изменяются. Поэтому с помощью понятия о диполе пытаются хоть как-то объяснить наблюдающиеся при экспериментах проявления сверхсложных процессов, механизмы которых изучены пока недостаточно хорошо.

Мышечная система, электрические органы рыб

 

 

Мышечную систему рыб, как и других позвоночных, разделяют мышечную систему тела (соматическую) и внутренних органов (висцеральную).

В мышечной системе тела выделяют мускулы туловища, головы и плавников. Внутренние органы имеют свою мускулатуру.

Мышечная система взаимосвязана со скелетом (опора при сокращении), с нервной системой (к каждому мышечному волокну подходит нервное волокно, и каждая мышца иннервируется определённым первом). Нервы, кровеносные и лимфатические сосуды располагаются в соединительнотканной прослойке мышцы. Сама соединительнотканная прослойка в мышцах рыб в отличие от мышц млекопитающих невелика.

У рыб, как и других позвоночных, сильнее всего развита туловищная мускулатура. У настоящих рыб она представлена двумя большими тяжами, расположенными вдоль тела от головы до хвоста (большая боковая мышца – m. lateralis magnus).

Продольной соединительнотканной прослойкой эта мышца делится на спинную (верхнюю) и брюшную (нижнюю) части.

Боковые мышцы разделены миотоммами (или миосептами) на миомеры, число которых соответствует количеству позвонков.

Наиболее отчетливо миомеры видны у личинок рыб, пока их тела прозрачны.

Мышцы правой и левой сторон, поочередно сокращаясь, сгибают хвостовой отдел тела и изменяют положение хвостового плавника, благодаря чему тело двигается вперед.

Над большой боковой мышцей вдоль тела между плечевым поясом и хвостом у осетровых и костистых лежит прямая боковая поверхностная мышца (m. rectus lateralis, m. lateralis superficialis). У лососевых в ней откладывается большое количество жира. По нижней стороне тела тянется прямая брюшная мышца (m. rectus abdominalis); у некоторых рыб, например угрей, ее нет. Между ней и прямой боковой поверхностной мышцей располагаются косые мышцы (m. obliquus).

Группы мышц головы управляют движениями челюстного и жаберного аппаратов (висцеральная мускулатура). Плавники имеют свою мускулатуру.

Наибольшее скопление мускулов определяет и расположение центра тяжести тела; у большинства рыб он находится в спинной части. Деятельность туловищных мышц регулируется спинным мозгом и мозжечком, а висцеральная мускулатура иннервируется периферической нервной системой, возбуждаемой непроизвольно. Различают поперечно-полосатые и гладкие мышцы. К поперечно-полосатым относятся скелетные мышцы тела (туловищные) и мышцы сердца. Туловищные мышцы могут быстро и сильно сокращаться, однако скоро утомляются. Особенностью строения сердечных мышц является непараллельное расположение обособленных волокон, а разветвление их кончиков и переход из одного пучка в другой, что обусловливает непрерывную работу этого органа.

Гладкие мышцы также состоят из волокон, но гораздо более коротких и не обнаруживающих поперечной исчерченности. Это мышцы внутренних органов и стенок кровеносных сосудов, имеющие периферическую (симпатическую) иннервацию.

Поперечно-полосатые волокна, а следовательно, и мышцы делят на красные и белые, различающиеся, как следует из названия, цветом. Цвет обусловлен наличием миоглобина – белка, легко связывающего кислород; миоглобин обеспечивает дыхательное фосфорилирование, сопровождающееся выделением большого количества энергии.

Красные и белые волокна различны по целому ряду морфофизиологических характеристик: цвету, форме, механическим и биохимическим свойствам (интенсивность дыхания, содержание гликогена и т. д. ).

Волокна красной мышцы (m. lateralis superficialis) узкие, тонкие, интенсивно кровоснабжаемые, расположенные более поверхностно (вдоль тела от головы до хвоста), содержат в саркоплазме больше миоглобина; в них обнаружены скопления жира и гликогена. Возбудимость их меньше, отдельные сокращения длятся дольше, но протекают медленней; окислительный, фосфорный и углеводный обмен интенсивнее, чем в белых.

В мышце сердца (красной) мало гликогена и много ферментов аэробного обмена (окислительный обмен). Она характеризуется умеренной скоростью сокращений и утомляется медленнее, чем белые мышцы.

К широких, более толстых, светлых – белых волокнах m. lateralis magnins миоглобина мало; меньше в них гликогена и дыхательных ферментов. Углеводный обмен происходит преимущественно анаэробно, и количество выделяемой энергии меньше. Отдельные сокращения сравнительно быстры. Мышцы быстрее сокращаются и утомляются, чем красные. Лежат они более глубоко. Красные мышцы постоянно деятельны. Они обеспечивают длительную или непрерывную работу органов. Именно они поддерживают постоянное движение грудных плавников, обеспечивают изгибы тела при плавании и поворотах, непрерывную работу сердца.

При быстром движении, бросках активны белые мышцы, при медленном – красные. Поэтому наличие красных или белых волокон (мышц) зависит от подвижности рыб: “спринтеры”-обладают почти исключительно белыми мышцами, у рыб, которым свойственны продолжительные миграции, кроме красных боковых мышц имеются добавочные красные волокна в белых мышцах.

Основную массу мышечной ткани у рыб составляют белые мышцы. Например, у жереха, плотвы, чехони на их долю приходится 96.3, 95.2 и 94.9% соответственно.

Белые и красные мышцы различаются по химическому составу. В красных мышцах содержится больше жира, тогда как в белых мышцах больше влаги и белка.

Толщина (диаметр) мышечного волокна изменяется в зависимости от вида рыб, их возраста, величины, образа жизни; у прудовых рыб – от условий содержания.

Например, у карпа, выращенного на естественной пище, диаметр мышечного волокна составляет (мкм): у мальков – 5–19, сеголетков 14–41, двухлетков – 25–50.

Туловищная мускулатура образует основную массу мяса рыбы. Выход мяса в процентах от общей массы тела (мясистость) неодинаков у разных видов, а у особей одного вида различается в зависимости от пола, условий содержания и т.д.

Мясо рыб усваивается быстрее, чем мясо теплокровных животных. Оно чаще бесцветно (судак) или имеет оттенки (оранжевый –у лососевых, желтоватый – у осетровых и т. д. ) в зависимости от наличия различных жиров.

Основную массу белков мышц рыб составляют альбумины и глобулины (85%), всего же у разных рыб выделяют 4–7 фракций белков.

Химический состав мяса (вода, жиры, белки, минеральные вещества) различен не только у разных видов, но и в разных частях тела. У рыб одного вида количество и химический состав мяса зависят от условий питания и физиологического состояния рыбы.

В нерестовый период, особенно у проходных рыб, происходит расходование резервных веществ, наблюдается истощение и, как следствие, уменьшение количества жира и ухудшение качества мяса.

У кеты, например, во время подхода к нерестилищам относительная масса костей увеличивается в 1,5 раза, кожи – в 2,5 раза. Мышцы оводняются – содержание сухого вещества снижается более чем в два раза; из мышц практически исчезают жир и азотистые вещества -рыба теряет до 98,4% жира и 57% белка.

Особенность пищи и окружающей воды могут сильно изменить пищевую ценность рыбы: в заболоченных, тинистых или загрязненных нефтепродуктами водоемах рыбы имеют мясо с неприятным запахом.

Качество мяса зависит от диаметра мышечного волокна, количества жира в мышцах и других факторов. В значительной мере оно определяется соотношением массы мышечной и соединительной ткани, по которому можно судить о содержании в мышцах полно ценных мышечных белков (по сравнению с неполноценными белками соединительнотканной прослойки).

Это соотношение изменяется в связи с физиологическими особенностями организма и факторами внешней среды, в том числе с возрастом и условиями выращивания рыбы. В мышечных белках костистых рыб на белки саркоплазмы приходится 20–30%, белки миофибрилл – 60–70, белки стромы – около 2%.

Все многообразие движений тела обеспечивает работа мышечной системы. Она главным образом обеспечивает и выделение тепла и электричества в организме рыбы.

Своеобразно измененными мышцами являются электрические органы. Эти органы у большинства имеющих их рыб развиваются из зачатков поперечно-полосатой мускулатуры. Они расположены по бокам тела и у современных рыб состоят из множества мышечных пластинок (у электрического угря их около 6000), преобразованных в электрические пластинки, переслаиваемые студенистой соединительной тканью. Нижняя часть пластинки заряжена отрицательно, верхняя – положительно. Разряды происходят под действием импульсов продолговатого мозга.

Электрические органы могут располагаться в разных частях тела, например у ската морской лисицы – на хвосте, у электрического сома – на боках.

Генерируя электрический ток и воспринимая силовые линии, искаженные встречающимися на пути предметами, рыбы ориентируются в потоке, обнаруживают препятствия или добычу с расстояния в несколько метров даже в мутной воде. Органы зрения в этих условиях помочь им не могут и редуцируются.

В соответствии со способностью к генерации электрических полей рыб разделяют на три группы:

1. Сильно электрические виды – имеют большие электрические органы, генерирующие разряды от 20 до 600 В. Основное назначение разрядов – нападение и оборона (электрический угорь, электрический скат, электрический сом).

2. Слабоэлектрические виды – имеют небольшие электрические органы, генерирующие разряды напряжением менее 17 В. Основное назначение разрядов – локация, сигнализация, ориентация (обитающие в мутных реках Африки многие мормириды, гимнотиды, некоторые скаты).

3. Неэлектрические виды – не имеют специализированных органов, но обладают электрической активностью. Генерируемые ими разряды распространяются на 10–15 м в морской воде и до 2 м в пресной. Основное назначение генерируемого электричества – локация, ориентация, сигнализация (многие морские и пресноводные рыбы: ставрида, атерина, окунь и др. ).

Электрические рецепторы и электрические органы рыб.

По характеру вырабатываемых электрических импульсов рыб делят на: 1) неэлектрических (большинство других рыб). 2) слабоэлектрических (мормиры, гимнарх, гимнот и др.); 3) сильноэлектрических (электрические сом, угорь, скат); Электрические поля образуются вокруг тела любой рыбы. Неэлектрические рыбы создают слабые электрические импульсы 100–200 мкВ в результате нервно-мышечной деятельности. В стае электрические поля отдельных рыб суммируются и образуется общее биоэлектрическое поле, которое влияет на поведение и ориентацию рыб. Слабо- и сильноэлектрические рыбы имеют специализированными электрическими органами.

Рыбы воспринимают электрические поля по-разному. У слабо- и сильноэлектрических рыб (за исключением электрического сома и звездочета) имеются специальные электрорецепторы, которые входят в систему органов чувств боковой линии. У неэлектрических рыб (кроме хрящевых, некоторых осетровых, сомовых) электрорецепторы не обнаружены. Но они способны воспринимать электрический ток, действующий на другие рецепторы и свободные нервные окончания. Электрические органы рыб служат им для защиты, нападения на добычу и ориентации. Электрические органы всех электрических рыб представляют собой парные, симметрично расположенные по бокам тела структуры, которые состоят из электрических пластинок, собранных в столбики. У ската электрические органы (до 25% массы рыбы) напоминают пчелиные соты. Один орган состоит приблизительно из 600 шестигранных призм, расположенных вертикально. В каждой призме насчитывается до 40 электрических пластинок, имеющих вид дисков, отделенных студенистой соединительной тканью. Каждая призма представляет собой своеобразную электрическую батарею.

У угря огромные электрические органы (около 30% массы тела) тянутся по бокам почти вдоль всего тела и также состоят из призм, но с горизонтальным расположением. В каждом органе насчитывают около 70 призм, каждая содержит около 6 тыс. электрических пластинок. У сома парные электрические органы (около 25% массы тела) расположены под кожей вдоль тела и сходятся по средней линии спинной и брюшной сторон. В студенистом веществе электрических органов находится большое количество электрических пластинок (около 2 млн), расположенных поперек тела. Нервными центрами электрических органов у рыб являются электрические доли продолговатого мозга и спинной мозг.

Основными элементами электрических органов у большинства рыб являются электрические пластинки. Электрическая пластинка имеет две стороны: 1) мембранную, или лицевую (к ней подходят нервные окончания); 2) обратную (к ней подходят кровеносные сосуды).

В момент возбуждения мембранная сторона пластинки становится электроотрицательной, а обратная – электроположительной. Электрические клетки в столбиках или призмах соединены последовательно (т.е. увеличивается общее напряжение), а ряды столбиков в электрических органах соединены параллельно (т.е. увеличивается общая сила тока). Величина генерируемого напряжения различна. Обитатели пресных вод со слабой электропроводностью (электрические угорь и сом) генерируют ток высокого напряжения: угорь до 600 В при силе тока 1,2 А, сом до 350 В при силе тока в десятые доли ампера. Обитатели морских вод с хорошей электропроводностью генерирует разряды меньшего напряжения, но высокой силы тока (электрический скат 40–60 В при силе тока 50–60 А).

Звездочеты и обыкновенные скаты занимают промежуточное положение между сильно- и слабоэлектрическими рыбами. Они имеют специализированные органы небольшого размера, которые расположены в хвостовой части тела (скат) или на голове (звездочет). Напряжение, создаваемое скатом-морской лисицей, составляет около 4 В. Слабоэлектрические рыбы имеют небольшие хвостовые электрические органы, создаваемое напряжение – десятые доли вольта.

У круглоротых (морская минога и миксины) имеется слабый электрический орган на голове, способный создавать слабое электрическое поле напряжением до 1 милливольта. По изменению этого поля животные чувствуют приближение другого организма или препятствия.

Долгое время принято было считать, что электрические явления играют важную роль в жизни только тех рыб, у которых есть электрогенераторные и электровоспринимающие органы. Это, как говорилось, сильноэлектрические и слабоэлектрические рыбы, а также те виды, которые лишены специальных органов, производящих электрические разряды, но имеют при этом органы электрочувствительности - электрорецепторы. К ним относятся акулы, скаты, химеры, все осетрообразные, а также сомы и ряд экзотических рыб, таких как двоякодышащие, африканские полиптерусы и, наконец, знаменитая латимерия. Понятно, что из всего этого списка для нас интересны, разве что, сомы.

Все же остальные рыбы, а к ним относятся все наши традиционные "рыболовные" виды, никаких специальных органов для восприятия электрических полей не имеют, и при обсуждении темы электричества в учебниках по ихтиологии вообще не упоминаются. Я, по крайней мере, не нашел таких упоминаний ни в одном известном мне руководстве, как отечественном, так и зарубежном, в том числе и последних лет издания.

Между тем, существует достаточно специальных экспериментальных исследований, в которых показано, что многие "неэлектрические" виды, во-первых, способны генерировать вокруг себя слабые электрические поля, а во-вторых, обладают способностью чувствовать электрическое поле и оценивать его параметры. Другое дело, что до сих пор непонятно, каким образом, с помощью каких органов чувств они это делают.

Почему эти результаты не попали на страницы учебников - другой вопрос, но мы вправе сделать вывод, что электричество является одним из факторов, влияющих на поведение не только сильно- или слабоэлектрических, но всех вообще рыб, в том числе и тех, которых мы с вами ловим. Поэтому к рыбалке эта тема имеет самое прямое отношение (даже если не брать в рассмотрение электроудочку).

Поля рыб - "неэлектриков"

Впервые слабое электрическое поле у неэлектрической рыбы было зарегистрировано у морской миноги американцами Клиеркопером и Сибакином в 1956 году. Поле фиксировалось специальной аппаратурой на расстоянии нескольких миллиметров от тела миноги. Оно ритмично возникало и исчезало синхронно с дыхательными движениями.

В 1958 году было показано, что электрическое поле, причем более сильное, чем у миноги, может генерировать вокруг себя и речной угорь. Наконец, начиная с 1960-х годов способность рыб, ранее считавшихся неэлектрическими, излучать слабые электрические разряды была установлена на многих морских и пресноводных видах.

Таким образом, сегодня совершенно не приходится сомневаться в том, что все без исключения рыбы производят вокруг себя электрические поля. Более того, у многих видов параметры этих полей измерены. Несколько примеров величин разрядов неэлектрических рыб приведены в таблице внизу страницы (замеры проводились на расстоянии около 10 см от рыбы).

Электрическая активность рыб сопровождается постоянным и импульсными электрическими полями. Постоянное поле рыбы имеет характерный рисунок - голова относительно хвоста заряжена положительно, и разность потенциалов между этими участками колеблется у разных видов от 0,5 до 10 мВ. Источник поля расположен в районе головы.

Импульсные поля имеют сходную конфигурацию, они создаются разрядами частотой от долей герца до полутора килогерц.

Чувствительность рыб - "неэлектриков"

Чувствительность к электрическим полям у разных видов рыб без электрорецепторов сильно варьирует. У одних она сравнительно невысока (в пределах десятков милливольт на сантиметр), у других сопоставима с чувствительностью рыб, обладающих специальными органами электрического чувства. Например, американский угорь в пресной воде чувствует поле величиной всего 6,7 мкВ/см. Тихоокеанские лососи в морской воде способны ощущать поле величиной 0,06 мкВ/см. При грубом пересчете, с учетом большего сопротивления пресной воды, это означает, что в пресных водах лососи способны чувствовать примерно 6 мкВ/см. Очень высокой электрочувствительностью обладает и наш обыкновенный сом. Способность воспринимать слабые электрические поля установлена и у таких видов, как карп, карась, щука, колюшка, гольян.

По мнению большинства ученых, роль электрорецепторов у всех этих рыб играют органы боковой линии. Но считать этот вопрос окончательно решенным нельзя. Вполне может оказаться, что у рыб существуют и еще какие-то механизмы, которые позволяют им чувствовать электричество, и о которых мы пока даже не подозреваем.

Электрический мир

Итак, мы приходим к выводу о том, что все рыбы, хотя и в разной степени, обладают электрочувствительностью, и все рыбы, опять же в разной степени, создают вокруг себя электрические поля. У нас, следовательно, есть все основания предполагать, что эти свои электрические способности рыбы как-то используют в своей повседневной жизни. Каким же образом, и в каких областях жизнедеятельности они могут это делать? Прежде всего, отметим, что электрочувствительность применяется рыбами (угорь, сельди, лососи) для ориентации в океане. Кроме того, у рыб развита система электрической коммуникации - взаимодействие друг с другом на основе обмена электрической информацией. Это используется при нересте, при агрессивных взаимодействиях (например, при охране своей территории), а также для синхронизации движений рыб в стае.

Но нам интереснее те аспекты, которые более непосредственно связаны с рыбалкой - поиск пищи, различение съедобных и несъедобных предметов.

Прежде всего, надо иметь в виду, что электрические поля создают вокруг себя не только рыбы, но и другие животные, в том числе, и организмы, которыми рыбы питаются. Например, слабое электрическое поле возникает в области брюшка плывущего рачка-бокоплава. Для рыб такие поля - ценный источник информации. Широко известны опыты с акулами, которые легко находят и пытаются откопать зарытый в песок миниатюрный электрогенератор, имитирующий своими разрядами биотоки рыбы.

Но то - акулы. А интересуют ли электрические поля пресноводных рыб? Очень любопытные и поучительные опыты на этот счет проводились еще в 1917 году с американским сомиком амиурсом. Авторы этих экспериментов занимались тем, что совали в аквариум с амиуросом палочки, сделанные из разных материалов - стекла, дерева, металла. Оказалось, что присутствие металлической палочки сомик ощущал с расстояния в несколько сантиметров, а, например, на стеклянную палочку реагировал только при ее прикосновении. Таким образом, амиурус чувствовал слабые гальванические токи, которые возникали при помещении металла в воду.

Еще интереснее, что реакция сомиков на металл зависела от интенсивности тока. Если поверхность соприкосновения с водой металлической палочки составляла 5-6 см2, у сомиков возникала оборонительная реакция - они уплывали. Если же поверхность контакта с водой была меньше (0,9-2,8 см2), то у рыб возникала положительная реакция - они подплывали и "клевали" место контакта металла с водой.

Когда читаешь про такие вещи, возникает большой соблазн потеоретизировать на тему о площади поверхности мормышки, о биметаллических мормышках и блеснах, представляющих собой, по сути, маленькие гальванические электрогенераторы, и тому подобных вещах. Но понятно, что теории такого рода так и останутся теориями, и любым рекомендациям, сделанным на их основе, грош цена. Взаимодействие рыбы с приманкой - процесс очень сложный, в котором участвуют самые разные факторы, и электричество среди них, скорее всего, далеко не главный. Тем не менее и о нем не стоит забывать. Во всяком случае, некоторые возможности для работы воображения и экпериментирования с приманками тут имеются. Почему бы, например, не предположить, что металлические блесны, особенно крупные, могут нести с собой чрезмерно сильное поле, которое не привлекает, а, наоборот, отпугивает рыбу? Ведь его можно убрать, покрыв блесну каким-нибудь прозрачным составом, непроводящим электричество.

И как тут не вспомнить тот примечательный факт, что вплоть до 60-х годов прошлого века финские и норвежские рыбаки при морской ловле камбалы пользовались деревянными крючками, сделанными из можжевельника. При этом они утверждали, что на деревянный крючок камбала ловится лучше, чем на металлический. А не в электричестве ли тут дело? Ну и так далее - простор для размышлений тут широкий.

Но вернемся к рыбам. Как уже говорилось в начале этой статьи, помимо восприятия чужих электрических полей, рыбы могут получать информацию об окружающем и по изменению параметров своего собственного поля. Ведь любой предмет, попадающий в поле рыбы, если он по электропроводности отличается от окружающей воды, будет неизбежно менять конфигурацию этого поля. Существует целый ряд исследований, в которых показано, что электрические разряды резко усиливаются у активно кормящихся "мирных" рыб, а также у хищников (например, у щуки) в момент броска на добычу. Причем, у ночных и сумеречных хищников это выражено сильнее, чем у дневных. Может быть, это означает, что в момент захвата пищи рыбы "включают" дополнительные каналы информации для более тщательного анализа ситуации? "Ощупывают" потенциальную добычу силовыми линиями своего поля? Рано или поздно ученые дадут ответ на этот вопрос, но нам-то ждать этого не обязательно - можно просто держать в уме такую возможность. То есть понимать, что рыба может знать об электрических свойствах нашей приманки гораздо больше, чем мы предполагаем, и, главное, чем мы сами о ней знаем. К примеру, я почти уверен, что хищники отлично "понимают", атакуя воблер, что эта "рыбка" сделана из какого-то странного материала - она меняет конфигурацию их поля иначе, чем настоящая рыба. Влияет ли это на принятие решения хищником "есть или не есть"? Вполне возможно, особенно если он не слишком голоден.

Немного лирики в заключение

Обращая внимание читателей на электрическую сторону жизни рыб, я бы совершенно не хотел, чтобы кого-нибудь это натолкнуло на мысль использовать электрочувствительность рыб для создания на этой основе некоей "безотказной" приманки, которую рыба брала бы всегда и в любых условиях. Попытки такого рода, не только в "электрической сфере", регулярно появляются на горизонте. То электроблесны, то "вкусный силикон", который хищник не то что не стремится выплюнуть, а, наоборот, спешит поскорее проглотить. Наконец, хитроумные активаторы клева, которые создают у рыбы непреодолимое чувство голода независимо от того, голодна она или сыта.








Дата добавления: 2015-06-01; просмотров: 1057;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.024 сек.