Расчет трубопроводов при неизотермическом движении однофазной жидкости.

Говоря об изотермическом движении однофазных жидкостей по трубопроводам, мы полагали, что температура, а следовательно, плотность и вязкость жидкости, остается неизменной на всем протяжении потока и в любой точке его поперечного сечения. Однако, реальные потоки жидкости или подогревают в различных печах или теплообменниках или их естественная теплота рассеивается в окружающей среде.

При движении продукции скважины от забоя к устью и далее до установок подготовки нефти происходит постепенное понижение температуры и разгазирование флюидов (нефти и воды), транспортируемых по одному трубопроводу. С понижением температуры и разгазированием флюидов увеличивается вязкость нефти (эмульсии), понижается Re и, в конечном итоге, увеличивается гидравлическое сопротивление:

t↓→ν↑→Rе¯→λ↑.

Падение температуры и глубокое разгазирование особенно нежелательны для высоковязких и парафинистых нефтей.

Также по этой причине транспортирование нефтей на месторождениях Севера должно осуществляться в газонасыщенном состоянии, чтобы снизить их вязкость, а следовательно, и потери от гидравлических сопротивлений.

Последняя ступень сепарации в данном случае должна устанавливаться на центральном пункте сбора нефти или на НПЗ.

Знание законов распределения температуры флюидов по длине нефтепровода необходимо как для проектировщиков нефтесборной системы, так и для эксплуатационников: для правильной расстановки подогревателей и настройки режима их работы.

Для установления закона изменения температуры жидкости по длине трубопровода выделим на расстоянии X от начала трубопровода элементарный участок длиной dX и составим для него уравнение теплового баланса.

Потери теплоты от элементарного участка dX в единицу времени в окружающую среду составят:

(4.47)

где – поверхность охлаждения элементарного участка, м;

k- коэффициент теплопередачи от нефти в окружающую среду.

При движении жидкости через рассматриваемый участок dX она охладится на dt oC и потеряет количество теплоты, равное:

(4.48)

- так как температура жидкости по мере удаления от начала трубопровода падает.

При установившемся режиме потери теплоты жидкостью должны быть равны теплоте, отдаваемой ею в окружающую среду:

 

(4.49)

 

где k – коэффициент теплопередачи от нефти в окружающую среду, Вт/(м2 К);

t - температура жидкости на расстоянии X от начала трубопровода;

t0 - температура окружающей среды;

d - внутренний диаметр трубопровода;

G - массовый расход нефти, кг/с;

CP - удельная массовая теплоемкость нефти, кДж/(кг град).

При этом tH > t > t0.

При стационарном режиме изменением k по длине трубопровода можно пренебречь.

Формулу Шухова используют для расчета температуры в любой точке неизитермического трубопровода:

(4.50)

Это и есть закон распределения температуры жидкости по длине трубопровода.

Температура в конечной точке трубопровода при x=l

, (4.51)

где Шу – параметр Шухова:

(4.52)

В неизотермическом трубопроводе в общем случае могут наблюдаться два режима течения: на начальном участке при сравнительно высокой температуре жидкости – турбулентный режим, а в конце- ламинарный. Температура, соответствующая переходу турбулентного режима в ламинарный, называется критической.

(4.43)

где t - температура нефти, при которой требуется узнать вязкость, oC;

tx - произвольная температура, выбранная в рабочем интервале температур;

νx - кинематическая вязкость нефти при температуре tx.

Если мы не располагаем экспериментальной кривой температурной зависимости вязкости, то для аналитического определения показателя крутизны вискограммы u необходимо знать вязкость нефти ν1 и ν2 при двух температурах t1 и t2:

(4.54)

Для ориентировочного определения вязкости нефтей в зависимости от их температуры и плотности можно пользоваться графическими зависимостями.

Очевидно, что при tKP ≥ tH в трубопроводе только ламинарный режим, а при tKP ≤ tК - режим только турбулентный. При tH >tKP >tK в трубопроводе имеют место оба режима.

Длина турбулентного участка lt определится из формулы Шухова:

(4.55)

По этой же формуле определится длина ламинарного участка, заменяя tH на tKP - в числителе и tKP на tK - в знаменателе, а также KT на KЛ.

Если в трубопроводе два режима, то температура потока в конце трубопровода:

(4.56)

Коэффициент теплопередачи в (4.52) зависит от внутреннего α1 и внешнего α2 коэффициентов теплоотдачи, а также от термического сопротивления стенки трубы, изоляции, отложения парафина и определяется из формулы:

(4.57)

где λi, dнi, di - соответственно коэффициент теплопроводности, Вт/(м.оС), наружный и внутренний диаметры трубы, изоляции, м;

α1 и α2 - коэффициенты теплоотдачи, Вт/(м2.грС).

Коэффициент теплоотдачи α1 определяют из формулы Михеева:








Дата добавления: 2015-05-19; просмотров: 1901;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.