Интегральный признак Коши сходимости числового ряда.
Пусть члены знакоположительного числового ряда u1+u2+…+un… (7) не возрастают: u1³u2≥…≥un≥… и пусть f(x) такая положительная, непрерывная, невозрастающая на промежутке [1;∞) функция, что f(1)=u1, f(2)= u2 ,…, f(n)= =un,… . Тогда ряд (7) сходится или расходится одновременно с несобственным интегралом
Доказательство:
Построим график функции y=f(x) на отрезке [1;n] и построим прямоугольник с основаниями [1;2], [2;3], …, [n-1;n] и высотами u1,u2,…,un-1, а также с высотами u2,u3,…,un.
Sn=u1+u2+…+un-1+un, Sвпис=u2.1+u3.1+…+un.1=u2+u3+…+un=Sn-u1,
Sопис=u1+u2+…+ +un-1=Sn-un.
Площадь криволинейной трапеции S= . Получаем
Sn-u1< < Sn-un.
Отсюд:
Sn<u1+ (17)
и Sn>un+ (18)
Пусть сходится. Это означает, что существует конечный предел =Y. Соотношение (17) принимает вид: Sn<u1+Y при любом n. Это означает, что последовательность частичных сумм Sn ряда (7) ограничена и, следовательно, ряд (7) сходится. Пусть расходится. Это означает, что =∞ и тогда из (18) следует, что последовательность частичных сумм Sn ряда (7) неограничена и, следовательно, ряд (7) расходится. Теорема доказана.
Дата добавления: 2015-05-16; просмотров: 983;