Теоретическая часть

Бета-распадом называется самопроизвольное превращение атомного ядра, при котором его заряд (Z) меняется на единицу, а массовое число (А) остается неизменным.

Различают три вида бета-распада:

1. -распад, при котором из ядра испускается электрон и антинейтрино :

. (2.1)

При - распаде , т. е. число протонов в ядре увеличивается на единицу, а число нейтронов уменьшается на единицу.

2. -распад, при котором из ядра испускается позитрон и нейтрино :

. (2.2)

-распад может происходить только в случае, если масса исходного атома превышает массу конечного атома на величину кэВ. При -распаде .

3. Электронный захват, при котором один из электронов атомной оболочки (например, электрон К-оболочки) захватывается ядром и при этом испускается нейтрино :

. (2.3)

Если энергия распада больше энергии связи К-электронов (самых близких к ядру), то происходит преимущественно К-захват. При электронном захвате .

Бета-процессы обусловлены слабым взаимодействием - одним из четырех видов известных фундаментальных взаимодействий. Однако вероятность бета-распада в отличие от «слабого» распада элементарных частиц, зависит от структуры ядра. Исследования бета-процессов привели к крупным открытиям в физике: обнаружению новой элементарной частицы - нейтрино и открытию несохранения четности при слабых взаимодействиях. Экспериментальное изучение бета-распада приносит много новых данных о структуре ядер.

При - и -распаде из ядра испускаются две частицы. В каждом единичном акте распада энергия перехода делится между бета-частицей и нейтрино (энергией отдачи ядра можно пренебречь вследствие его массивности), так что кинетическая энергия электрона (или позитрона) может принимать любые значения от нуля до максимально возможной величины . При электронном захвате энергия делится только между нейтрино и ядром отдачи, при этом нейтрино уносит практически всю энергию распада. Для большого количества одинаковых ядер в результате статистического усреднения получается вполне определенное распределение электронов (позитронов) по энергиям. Это распределение называется бета-спектром, а величина - граничной энергией бета-спектра. Значения для бета-распада для различных радиоактивных веществ могут сильно различаться.

Например, радиоактивный нуклид (тритий) испускает бета-частицы с =18,60 кэВ, в случае же граничная энергия спектра равна 16,6 МэВ. Большая часть значений лежит в интервале 10—5000 кэВ. Максимальная энергия бета-частиц определяет энергию распада и является важной физической величиной.

Типичный бета-спектр показан на рис. 2.1. Бета-распад 32Р происходит на основное состояние 32S и не сопровождается -излучением (см. схему распада). Во многих случаях бета-распад происходит на возбужденные уровни ядра-продукта. В этих случаях бета-излучение сопровождается -излучением.При этом возбужденное ядро может передать энергию электронам атомных оболочек, в результате чего образуются моноэнергетические группы электронов с энергией , где hv - энергия -излучения, Есв - энергия связи на одной из атомных оболочек. Это явление называется эффектом внутренней конверсии -излучения. Электроны внутренней конверсии могут затруднять измерения бета-спектров. Участок бета-спектра с линиями электронов внутренней конверсии при распаде показан на рис. 2.2.

Периоды полураспада -активных ядер лежат в диапазоне

.

Вероятность распада в сильной степени зависит от разности спинов материнского и дочернего ядер и тем меньше, чем больше эта разность.

Относительно простой пример -спектра, показанный на рис. 2.1, соответствует тому случаю, когда -распад происходит на одно состояние конечного ядра. В этом случае закон радиоактивного распада имеет простой вид

, ,

где - число ядер данного радиоактивного вещества в момент времени t, а - постоянная распада.

Распады могут происходить на разные возбужденные уровни конечного ядра, что приводит к усложнению формы -спектра. В этом случае обычно приводят вероятности (в %) распада на различные возбужденные состояния конечного ядра.

Если дочернее ядро нестабильно по отношению к -распаду, то происходит еще большее усложнение спектра регистрируемых частиц. Уравнения, описывающие динамику распада, в этом случае отражают баланс между увеличением числа дочерних ядер в результате распада материнских ядер и уменьшением их числа в результате бета-распада

, .

Индексами 1 и 2 обозначены величины, относящиеся к материнскому и дочернему ядрам соответственно. Интегральные соотношения имеют вид

, .

Если , как, например, это имеет место в случае распада (рис. 2.3), то соотношение между числами ядер во время равно

.

Так как число распадов в единицу времени (активность) равно , то полученное соотношение векового равновесия означает равенство активностей материнского и дочернего веществ.

 

 

Рис. 2.3. Схема распада .

 

Для приведенного примера это означает, что спектр вылетающих электронов является суммой -спектров стронция-90 и иттрия-90, имеющих одинаковую интегральную интенсивность. Спектр иттрия-90 в свою очередь образуется двумя -распадами, идущими на основной и возбужденный уровни ядра циркония-90. Основной вклад (99%) вносят переходы на основной уровень. переход с возбужденного уровня циркония-90 на основной осуществляется путем испускания -квантов.

Электроны, движущиеся в веществе, взаимодействуют с его атомами, в результате чего теряют свою энергию и отклоняются от первоначального направления, т. е. рассеиваются. Рассеяние называется упругим, если сохраняется сумма кинетических энергий взаимодействующих частиц. Всякое иное рассеяние называется неупругим. Следует различать взаимодействие электронов с атомными электронами и атомными ядрами, хотя оба вида взаимодействия всегда происходят одновременно.

Взаимодействие -частиц с атомными электронами приводит к передаче атомному электрону некоторой энергии, следствием чего является либо ионизация, либо возбуждение атома. Оба вида передачи энергии имеют примерно равную вероятность и объединяются под общим названием «ионизационные потери энергии». Теория ионизационных потерь электронов была разработана Бором, а также Бете и Блохом, которые получили формулу для потери энергии на ионизацию на единице пути

(2.4)

 

где v и Е — скорость и кинетическая энергия падающего электрона; и е масса покоя и заряд электрона; Z заряд ядра; п — число атомов в 1 см3 среды ( , где А - атомный номер вещества); ; — средняя энергия возбуждения атома; — член, учитывающий поляризацию среды.

Л. Д. Ландау показал, что средние потери энергии монохроматическими электронами при прохождении слоя вещества с атомным номером А и зарядовым числом Z составляют:

, (2.5)

где - плотность вещества, г/см3, — толщина слоя вещества, см.

Так как отношение Z/A для разных веществ приблизительно постоянно, то величина (dE/dx) в формуле (2.5) практически зависит лишь от плотности вещества . Очень слабая зависимость от Z проявляется только в средней энергии возбуждения , которая стоит под знаком логарифма. Следовательно, пробег электронов с данной первоначальной энергией Е в различных веществах с одинаковой плотностью будет приблизительно одинаковым. Поэтому за меру толщины вещества, взаимодействующего с электронами, берут произведение линейной толщины и плотности вещества и выражают пробег в единицах г/см2 или мг/см2.

При взаимодействии -частиц с ядрами происходят процессы упругого рассеяния электронов в кулоновском поле ядра и неупругого рассеяния, сопровождаемого испусканием электромагнитного излучения.

Упругое рассеяние электронов в кулоновском поле ядра может быть условно разделено на четыре класса: однократное рассеяние, кратное рассеяние, многократное рассеяние и диффузия. Если толщина слоя мала, , где - эффективное сечение процесса), то происходит только однократное рассеяние, т. е. почти все рассеяние обусловлено только одним ядром. Для больших толщин ( )получается кратное рассеяние, т. е. угол рассеяния обязан нескольким последовательным однократным актам рассеяния. При многократном рассеянии (среднее число актов рассеяния больше 20) угловое распределение рассеянных электронов является приблизительно гауссовым до тех пор, пока средний угол рассеяния меньше 20°. Для еще больших толщин ( ) угловое распределение рассеянных электронов принимает вид . Средний угол рассеяния достигает максимальной величины =33° и остается постоянным при дальнейшем увеличении толщины. Это случай полной диффузии. Электроны выходят из слоя также и со стороны падающего пучка - это так называемое обратное рассеяние электронов.

Неупругие процессы при взаимодействии электрона с ядром связаны с испусканием электромагнитного излучения, возникающего при ускорении электрона в кулоновском поле ядра. Рожденное в таком процессе -излучение является тормозным. Потеря энергии электрона на тормозное излучение называется радиационной. Согласно Гейтлеру радиационные потери на единице длины равны

(2.6)

Вероятность образования тормозного излучения пропорциональна квадрату заряда ядра, поэтому радиационные потери энергии играет большую роль в тяжелых элементах. Излучение является важным механизмом потери энергии электронами, но этот механизм несущественен для более тяжелых частиц (мезонов, протонов и др.).

Сравнение формул для потерь энергии на излучение и на ионизацию показывает, что потери энергии имеют разный характер. Так, потери энергии на излучение пропорциональны Z2 и увеличиваются с энергией линейно, в то время как потери на ионизацию пропорциональны Z и увеличиваются с энергией лишь логарифмически. Поэтому при больших энергиях падающих электронов преобладают потери на излучение. С уменьшением энергии электрона роль ионизации (и возбуждения) увеличивается. При энергии (МэВ) оба вида потери энергии имеют примерно равную вероятность. Отметим, что для Аl (Z=13) = 46 МэВ. Для электронов, испускаемых при радиоактивном распаде, радиационные потери в общем балансе потерь играют незначительную роль, так как значения энергии бета-распада обычно не превышают 5 МэВ.

Все сказанное выше применимо и для позитронов. Надо заметить, что проникающая способность позитронов немного отличается от проникающей способности электронов той же энергии ввиду того, что позитроны и электроны несколько по-разному рассеиваются в поле ядра. Вызванное этим обстоятельством различие в поведении данных частиц не является существенным.

Определение граничной энергии бета-спектра методом поглощения

Знание максимальной энергии бета-излучения необходимо для решения многих научных и практических задач. Во многих важных случаях периоды полураспада оказываются очень короткими и составляют всего несколько минут или даже секунд. При этом часто приходится иметь дело с препаратами малой интенсивности. Поэтому необходимы простые и быстрые способы определения максимальной энергии бета-излучения, не требующие к тому же больших активностей. Одним из таких способов являетя метод поглощения, которым можно определить максимальную энергию бета-спектра с погрешностью порядка 5-10%. Такая точность часто бывает достаточной при решении прикладных задач. Точнее определить энергию бета-частиц можно с помощью пропорционального счетчика, сцинтилляционного, полупроводникового и магнитного спектрометров.

Принцип метода поглощения заключается в определении пробега электронов в каком-либо веществе.

Рассмотрим пучок электронов, падающий нормально на поверхность фильтра (рис. 2.4). Первоначально быстрые электроны проходят в поглотителе некоторое расстояние приблизительно по прямой линии, теряя небольшие количества энергии и испытывая лишь малые отклонения.

По мере уменьшения энергий электронов их рассеяние становится более сильным. Угловое распределение электронов в пучке начинает приближаться к гауссову, характерному для многократного рассеяния. В этой области наиболее вероятный угол рассеяния увели­чивается пропорционально квадратному корню из пройденной толщины фольги. При дальнейшем рассеянии угловое распределение становится настолько размытым, что нельзя говорить о каком-либо преимущественном направлении движения электронов, и их распространение можно рассматривать как диффузию.

Число электронов, прошедших через фольгу, есть монотонно убывающая функция толщины фольги. Для умеренных толщин уменьшение числа электронов является следствием, главным образом, обратной диффузии электронов, которые отклоняются на углы, превышающие 90°, в результате сложения большого числа отклонений на малые углы. При дальнейшем увеличении толщины фольги уменьшение числа электронов происходит как вследствие рассеяния, так и по причине того, что часть из них тормозится практически до нулевой энергии и, таким образом, выбывает из пучка. Предельная толщина фольги, практически полностью задерживающая первоначально падающие электроны, называется эффективным пробегом электронов. Этот пробег определяется по кривым поглощения.

Так как теоретические расчеты эффективного пробега моноэнергетических электронов в конденсированной среде трудны, приходится обращаться к установлению эмпирического соотношения «пробег - энергия» путем измерения пробега моноэнергетических электронов известной энергии.

Однако при этом возникает трудность экспериментального определения пробега по измеренной кривой поглощения. Экспериментально пробег не может быть определен как предельная толщина поглотителя, которую уже не могут пройти первоначально падающие электроны, так как различные электроны данного пучка рассеиваются или тормозятся по-разному и такая толщина практически не существует.

На рис. 2.5 приведены типичные кривые поглощения в алюминии для моноэнергетических электронов различных энергий. По оси абсцисс отложена толщина d алюминиевого фильтра, по оси ординат - интенсивность I пучка электронов, прошедших через фильтр. Каждая кривая имеет после начальной выпуклой части довольно длинную прямолинейную часть, заканчивающуюся некоторым «хвостом». Наиболее воспроизводимой чертой кривых поглощения, снятых при различных условиях эксперимента является точка пересечения линейной части кривой поглощения с осью абсцисс (экстраполированный пробег ).

Экстраполированный пробег используется для практических целей. Выше 0,8 МэВ связь между пробегом и энергией электронов может быть выражена линейным соотношением = А + BE, где А и В - константы.

Кривые поглощения в случае бета-излучения, имеющего непрерывный энергетический спектр, отличаются от кривых поглощения для моноэнергетических электронов более резким, почти экспоненциальным спадом. Такой спад объясняется тем, что в пучке бета-частиц имеются электроны всевозможных энергий, в том числе и очень малых, медленные же электроны поглощаются весьма сильно. Типичная кривая поглощения бета-излучения приведена на рис. 2.6, а. Как видно, конец кривой поглощения подходит к линии фона асимптотически. Такой ход кривой объясняется постепенно уменьшающимся в бета-спектре числом быстрых электронов и относительно слабым поглощением электронов максимальной энергии. По такой кривой поглощения нельзя произвести непосредственное определение пробега.

 

Рис. 2.6. Типичная кривая поглощения для случая непрерывного бета-спектра (а), (б) – та же кривая в полулогарифмическом масштабе.

 

Для определения пробега целесообразно построить рассматриваемую кривую в полулогарифмическом масштабе (рис. 2.6, б). В этом случае пробег бета-частиц, соответствующий их максимальной энергии, определяется по точке пересечения конца кривой поглощения с линией фона.

Для определения максимальной энергии бета-излучения необходимо иметь кривую «пробег-энергия», такую же, как в случае моноэнергетических электронов. Многие исследователи занмались установлением зависимости между максимальным пробегом .

Некоторые простые эмпирические соотношения между энергией и максимальным пробегом бета-частиц в алюминии даются уравнениями

Е = 1,39 R0,6, при Е < 0,15 МэВ, (2.7)

Е = 1,92 R0,725, при 0,15 МэВ < Е < 0,8 МэВ, (2.8)

Е = 1,85 R + 0,245, при Е > 0,8 МэВ. (2.9)

В формулах (2.7) - (2.9) максимальный пробег R дан в граммах на квадратный сантиметр (г/см2) алюминиевого фильтра, способного практически полностью поглотить бета-частицы с данной граничной энергией.

На рис. 2.7 приведена кривая, связывающая пробег бета-частиц с их максимальной энергией.

Непрерывное энергетическое распределение бета-частиц, испускаемых радиоактивными веществами, и рассеяние электронов при прохождении через вещество приводит к тому, что ослабление пучка бета-частиц, идущих от источника к детектору, носит характер, близкий к экспоненциальному закону

, (2.10)

где d - толщина фильтра; - коэффициент ослабления.

Экспоненциальный закон хорошо совпадает с экспериментальной кривой в области средних значений толщины поглотителя. В области малых и больших значений наблюдается заметное отступление от экспоненциального закона (см. рис. 2.6б.) При измерениях удобно пользоваться толщиной слоя половинного поглощения , необходимого для уменьшения вдвое начальной интенсивности бета-излучения. Так как и , то

. (2.11)

Коэффициент ослабления находят по наклону прямолинейного участка кривой поглощения , где угол наклона прямой).

 

 

Рис. 2.7. Связь между максимальной энергией бета-частиц и их пробегом в алюминии Рис. 2.8. Связь между максимальной энергией бета-частиц и слоем половинного ослабления

 

Связь между толщиной слоя алюминия, ослабляющего излучение в раз, и верхней границей бета-спектра была тщательно исследована. На рис. 2.8 приводится номограмма, связывающая толщину слоя половинного поглощения с граничной энергией - спектра.

 

 








Дата добавления: 2015-05-16; просмотров: 1712;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.03 сек.