Современные способы повышения качества металлов и сплавов

 

Развитие специальных отраслей машиностроения и приборо­строения предъявляет все более жесткие требования к качеству металла: показателям его прочности, пластичности, газосодер­жания, анизотропии механических свойств. Улучшить эти пока­затели можно уменьшением в металле неметаллических включе­ний, газов, вредных примесей. Плавка в обычных плавильных агрегатах (мартеновских и электрических, кислородных конвер­терах) не позволяет получить металл требуемого качества. Поэ­тому в последние годы разработаны новые технологические про­цессы, позволяющие повысить качество металла: обработка метал­ла синтетическим шлаком, электрошлаковый переплав (ЭШП), вакуумирование металла при разливке, плавка в вакуумных печах, вакуумно-дуговой переплав (ВДП), вакуумно-индукционный переплав (ВИП), переплав металла в электронно-лучевых и плазменных печах. Количество металла, выплавляемого этими способами, постоянно увеличивается.

Обработка металла синтетическим шлаком. Сущность про­цесса, заключается в ускорении взаимодействия между сталью и шлаком за счет интенсивного их перемешивания при запол­нении сталью ковша.

Процесс осуществляют так: синтетический шлак, состоящий из 55 % СаО, 40 % А12О3, небольших количеств SiO2, MgO и миниму­ма FeO, выплавляют в специаль­ной электропечи и заливают в ковш. В этот же ковш затем заливают с некоторой высоты (обычно из электропечи) сталь. В результате перемешивания стали и шлака поверхность их взаимодействия резко возра­стает, и металлургические реак­ции между металлом и шлаком протекают в сотни раз быстрее, чем в обычной плавильной печи. Благодаря этому, а также низ­кому содержанию закиси железа в шлаке, сталь, обработанная таким способом, содержит меньше серы, кислорода и неметалли­ческих включений, улучшаются ее пластические и прочностные характеристики.

Вакуумная дегазация стали. Этот способ (рис. 1.17) относится к внепечным способам обработки, осуществляемым в ковше или излож­нице. Ее проводят для уменьшения содержания растворенных в металле газов и неметаллических включений. Вакуумной дега­зации в ковше или изложнице подвергают сталь, выплавляемую в мартеновских и электропечах. Сущность процесса заключается в снижении растворимости в жидкой стали газов при понижении давления над зеркалом металла, благодаря чему газы выделяются из металла, что приводит к улучшению его качества. Процесс осуществляется различными способами: вакуумпрованием стали в ковше, при переливе из ковша в ковш, при заливке в изложницу и др.

 

Вакуумирование в ковше выпол­няют в стальных, футерованных изнутри камерах. Ковш 3 с жидкой сталью 4 помещается в камеру 2, закрывающуюся герметич­ной крышкой 1. Вакуумными насосами в камере создается раз­режение до остаточного давления 267…667 Н/м2 (0,267…0,667 кПа). Продолжитель­ность вакуумироваиия 12…15 мин. При понижении давления из жидкой стали выделяются водород и азот, а при большой окисленности металла уменьшается и содержание кислорода вслед­ствие его взаимодействия с углеродом стали. Всплывающие пу­зырьки газа захватывают неметаллические включения, в резуль­тате чего содержание их в стали снижается. При снижении содер­жания газов и неметаллических включений улучшаются проч­ностные и пластические характеристики стали.

Электрошлаковый пе­реплав. Способ разработан в Институте электросвар­ки им. Е. О. Патона для переплава стали с целью повышения качества ме­талла. Электрошлаковому переплаву подвергают вы­плавленный в электроду­говой печи и прокатан­ный на круглые прутки металл. Источником тепла при ЭШП явялется шлаковая ванна, нагреваемая за счет прохождения через нее электрического тока. Электрический ток подводится к переплавляемому электроду 1, погруженному в шлаковую ванн 2, и к поддону 9, установлен­ному внизу в водоохлаждаемой металлической изложнице (кри­сталлизаторе) 7, в которой находится затравка 8 (рис. 1.18). Выделяющаяся теплота нагревает шлаковую ванну 2 до 1700 °С и более и вызывает оплавление конца электрода. Капли жидкого металла 3 проходят через шлак, собираются, образуя под шлаковым слоем металличе­скую ванн 4.

Перенос капель металла через шлак, интенсивное перемешивание их со шлаком способствуют их активному взаимодействию, в результате чего происходит удаление из металла неметалли­ческих включений и растворенных газов. Металлическая ванна, непрерывно пополняемая за счет расплавления электрода, под воздействием водоохлаждаемого кристаллизатора постепенно формируется в слиток 6. Кристаллизация металла, последова­тельная и направленная снизу вверх, происходит за счет теплоотвода через поддон кристаллизатора. Последовательная и направленная кристаллизация способствует удалению из металла неметаллических включений и пузырьков газа, получению плотного однородного слитка. После полного застывания слитка опускают поддон и извлекают его из кристаллизатора.

 

В результате электрошлакового переплава содержание кис­лорода в металле снижается в 1,5…2 раза, понижается концен­трация серы и соответственно уменьшается в 2…3 раза загряз­ненность металла неметаллическими включениями, причем они становятся мельче и равномерно распределяются в объеме слитка.

Слиток отличается большой плотно­стью, однородностью, его поверхность — хороший качеством благодаря наличию шлаковой корочки 5. Все это обуслов­ливает высокие механические и эксплуа­тационные свойства сталей и сплавов электрошлакового переплава.

Слитки выплавляют круглого, квад­ратного, прямоугольного сечений мас­сой до 110 т.

Вакуумно-дуговой переплав. Такой переплав применяют для удаления из металла газов и неметаллических вклю­чений. Сущность процесса заключает­ся в снижении растворимости газов в стали при снижении давления и уст­ранении взаимодействия ее с огнеупор­ными материалами футеровки печи, так как процесс ВДП осуществляется в водоохлаждаемых медных изложницах. Для осуществления процесса исполь­зуют вакуумные дуговые печи с рас­ходуемым электродом (рис. 1.19).

В зависимости от требований, предъяв­ляемых к металлу, расходуемый элек­трод может быть получен механиче­ской обработкой слитка, выплавленного в электропечах. Расходуемый электрод 3 закрепляют на водоохлаждаемом штоке 2 и помещают в корпус 1 печи и далее в медную водоохлаждаемую изложницу 6. Из корпуса печи ва­куум-насосами откачивают воздух до остаточного давления 1,33 Н/м2 (0,00133 кПа). При подаче напряжения между расходуемым электродом-катодом и затравкой-анодом 8, помещенной на дно изложницы, возникает дуговой разряд. Теплотой, выделяющейся в зоне раз­ряда, расплавляется конец электрода; капли 4 жидкого металла, проходя зону дугового разряда, дегазируются, постепенно запол­няют изложницу и затвердевают, образуя слиток 7.Дуга горит между расходуемым электродом и ванной 5 жидкого металла, находящейся в верхней части слитка, на протяжении всей плавки. Благодаря сильному охлаждению нижней части слитка и разо­греву дугой ванны жидкого металла в верхней его части создаются условия для направленного затвердевания слитка. В резу­льтате направленного затвердевания неметаллические включения сосредоточиваются в верхней части слитка, а усадочная раковина в слитке мала. Слитки, полученные в вакуумных дуговых печах, содержат очень небольшое количество газов, неметаллических включений, отличаются высокой равномерностью химического состава, имеют хорошую макроструктуру. Поэтому металл, полу­ченный ВДП, отличается повышенными механическими свой­ствами и пластичностью. Из слитков ВДП изготовляют ответ­ственные детали турбин, двигателей, авиационных конструкций. Емкость дуговых вакуумных печей — до 50 т.








Дата добавления: 2015-04-25; просмотров: 979;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.