Письменная нумерация.

В десятичной системе счисления для записи чисел используют десять знаков: 1,2,3,4,5,6,7,8,9,0. Знаки для записи чисел называют цифрами.

Разряд – место для записи цифр в числе. Каждый разряд имеет свое название. Название разрядов совпадает с названием единиц счета – разряд единиц, десятков, сотен и т.д. Кроме того, разрядам дают названия, совпадающие с номером места, занимаемого разрядом в записи числа. Разряды нумеруют справа налево. Соответственно: 1-ый разряд – разряд единиц; 2-ой разряд- разряд десятков; 3-ий разряд – разряд сотен, 4-ый разряд – разряд единиц тысяч и т. д.

Запись чисел ведется на основе принципа поместного значения цифр: значение цифры зависит от места занимаемого этой цифрой в записи числа

В устной нумерации для обозначения разрядов или классов, не содержащих ни одной единицы, особые слова не требуются, ибо названия этих разрядных единиц просто опускаются. В письменной нумерации на месте отсутствующих единиц в каком-либо разряде или классе ставится цифра 0. Изобразим рассмотренные выше факты в виде схемы (см. схему 1).

 

 

Схема 1

 

 

При изучении нумерации учащиеся знакомятся с характеристикой числа:

1. Прочитать число.

2. Указать, сколько в нем счетных единиц каждого рода (единиц, десятков, сотен и т.д.).

3. Сколько единиц в каждом разряде.

4. Назвать непосредственно следующее и пред-шествующее числа для данного числа (соседей числа).

5. Представить число в виде суммы разрядных слагаемых.

В математике существует 3 подхода к формированию понятия числа: аксиоматический, теоретико-множест-венный и через измерение величин.

В традиционной и некоторых других образовательных системах («Гармония», система Л.В. Занкова и др.) понятие числа формируется на основе теоретико-множест-венного подхода с элементами аксиоматического, который позволяет усваивать свойства ряда натуральных чисел.

 

Рассмотрим теперь порядок изучения нумерации в системе Л.В. Занкова.

В данной системе выделяются следующие разделы «Однозначные числа», «Двузначные числа», «Трехзначные числа», «Многозначные числа», «Числа в пределах миллиона». Изучение нумерации проходит в два этапа: подготовительный (дочисловой) этап и изучение чисел.

На подготовительном этапе учащиеся закрепляют понятия «больше», «меньше», «равно», уточняются пространственные представления учащихся.

Изучение натурального ряда чисел начинается с ознакомления учащихся с историей возникновения чисел (когда люди не знали чисел, как они считали и др. вопросы). Первоначальной основой знакомства с натуральными числами является теоретико-множественный подход. Число возникает как инвариантная характеристика класса равносильных множеств, а основным инструментом познания отношений между ними становится установление взаимно однозначного соответствия между элементами сравниваемых множеств. На этой основе формируются понятия об отношениях больше, меньше, равно, неравно как между множествами, так и между соответствующими им числами. На данном этапе учащиеся соотносят число с конкретными конечными множествами.

С числами и цифрами дети знакомятся вне их упорядоченного расположения. Написание цифр изучается в порядке возрастания трудности их изображения: 1, 4, 6, 9, 5, 3, 2, 7, 8.

На следующем этапе однозначные натуральные числа, с которыми дети познакомились в процессе сравнения множеств, упорядочиваются в начало натурального ряда чисел и происходит знакомство с его основными свойствами.

План работы на данном этапе:

1. Активизация представлений детей о наведении порядка в самом общем смысле этого слова и о многообразии возможностей его наведения (Задание: На рисунке ты видишь много разных геометрических фигур. Как ты думаешь, есть на этом рисунке порядок? Расскажи, как бы ты навел порядок среди этих фигур. Сделай рисунок.)

2. Формирование представлений о некоторых способах упорядочивания в математике, сосредоточив основное внимание на упорядочивании в порядке возрастания и в порядке убывания.

3. Упорядочивание расположения нескольких разночисленных множеств в порядке увеличения (уменьшения) количества элементов.

Задание: Что можно сказать о рядах кругов? Можно ли сказать, что они расположены в порядке увеличения? Запишите числом, сколько кругов в каждом ряду. Поставьте знаки сравнения.

 

           
     

 


                                   
                 

 


3 6 6 9 3 9

 

4. Упорядочивание соответствующих множествам чисел как различающихся на одно и тоже число, так и на разные числа.

5. Упорядочивание всех однозначных натуральных чисел и введение понятия натурального ряда чисел.

6. Знакомство со свойствами натурального ряда чисел (начинается с 1, каждое следующее на 1 больше предыдущего, бесконечный).

7. Понятие об отрезке натурального ряда чисел, сходство и различие между натуральным рядом чисел и его отрезком.

Затем учащиеся знакомятся с числом 0 (число 0 характеризует отсутствие объектов пересчета).

Изучение концентра «Двузначные числа» начинается с числа 10.

Алгоритм изучения двузначных чисел:

· Образование новой счетной единицы – десятка объединением десяти предыдущих единиц.

· Образование десяти как следующего числа натурального ряда.

· Запись 10 и анализ записи.

· Счет десятками до 90.

· Запись получившихся чисел.

· Знакомство с названиями круглых десятков и анализ их образования.

· Заполнение промежутков между круглыми десятками в натуральном ряду чисел.

· Знакомство с название двузначных чисел, стоящих между десятками. Установление общего принципа образования этих названий.

· Сравнение всех изученных натуральных чисел.

Перед изучением новой счетной единицы проходит подготовительная работа: На дом детям дается задание узнать когда и какие предметы считают разными группами и зачем это делают (пара ботинок, перчаток, коробка карандашей 6 (12, 18) и др.).

Ознакомление с числами второго, третьего и т.д. десятка идет постепенно. Каждый новый десяток рассматривается отдельно (сначала образование чисел второго десятка, через несколько уроков образование чисел третьего десятка и т.д.). Изучение двузначных чисел значительно растянуто во времени. Это сделано для того, чтобы дети имели возможность глубоко осознать принцип построения той системы счисления, которой мы пользуемся.

Изучение трехзначных чисел начинается в конце 2 класса и идет в соответствии с тем алгоритмом, который мы написали для двузначных чисел.

В 3 и 4 классах учащиеся продолжают знакомиться с натуральным рядом чисел. Рассмотрение темы «Многозначные числа» разбито на 2 этапа: сначала дети изучают числа в пределах первых двух классов (класса единиц и класса тысяч), а затем знакомятся с числами класса миллионов.

Центральным моментом каждого нового расширения множества натуральных чисел является образование новой счетной единицы (тысячи, десятка тысяч, сотни тысяч и т.д.). Каждая такая единица возникает в первую очередь как результат объединения десяти предыдущих единиц в единое целое: десять сотен – одна тысяча, десять тысяч – один десяток тысяч и т.д.

Далее изучение темы идет по алгоритму, описанному для двузначных чисел.

Хотя первоначально натуральное число возникает перед учениками в теоретико-множественном подходе, уже в первом классе дети знакомятся и с интерпретацией числа как результата отношения величины к выбранной мерке. Это происходит при изучении таких величин как длина, масса, емкость и др. Эти два подхода продолжают сосуществовать и в дальнейшем, завершаясь обобщением, в результате которого появляются понятия точного и приближенного числа. Расширение понятия числа происходит за счет знакомства с дробными, а также положительными и отрицательными числами.








Дата добавления: 2015-04-21; просмотров: 3877;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.