Линейные изоляторы
Линейные изоляторы применяются для подвески проводов в ЛЭП, контактной сети и гибких шин в открытых распределительных устройствах. По конструктивному исполнению изоляторы для ЛЭП делятся на штыревые и подвесные. Подвесные изоляторы делятся на тарельчатые и стержневые. Изоляторы для контактной сети делятся по назначению на подвесные, натяжные, фиксаторные и консольные и изолирующие элементы [30].
|
На рис. 1.1 показана конструкция штыревого линейного изолятора для изоляции и крепления к поддерживающим конструкциям проводов ВЛ напряжением до 10 кВ включительно. Условное обозначение расшифровывается следующим образом: Ш - штыревой, Ф – фарфоровый, 10 – класс изолятора (номинальное напряжение электроустановки, кВ), Г – конструктивное исполнение. Механическая разрушающая сила на изгиб 12,5 кН. Длина пути утечки 265мм.
Провод крепится на верхней или боковой бороздке изолятора с помощью вязки или специальных зажимов. Изолятор навертывается на металлический штырь или крюк, расположенный на опоре. Гнездо с резьбой для навертывания штыря или крюка углублено в тело изолятора настолько, что верхняя часть штыря или крюка оказывается на уровне шейки изолятора. Этим достигается уменьшение изгибающего момента, действующего на тело изолятора.
|
На рис.1.2 приведена конструкция стеклянного тарельчатого изолятора типа ПС 120 – Б. Изолятор предназначен для изоляции и крепления к поддерживающим конструкциям проводов контактной сети и ВЛ. Условное обозначение расшифровывается следующим образом: П – подвесной, С - стеклянный, 120 – класс изолятора механическая разрушающая сила при растяжении, кН), Б – модификация изолятора. Длина пути утечки 320мм.
Основу изолятора составляет стеклянное тело – тарелка 1, средняя часть которой, вытянутая кверху, называется головкой. На головке крепится шапка 2 из ковкого чугуна, а в гнездо, расположенное внутри головки, заделывается стальной стержень 3. Армировка изолятора, т. е. механическое соединение изоляционного тела с металлической арматурой, выполняется при помощи портландцемента.
При последовательном соединении таких изоляторов можно получить гирлянду на любое номинальное напряжение. Соединение изоляторов в гирлянду осуществляется путем введения утолщенной головки стержня в специальное ушко на шапке другого изолятора и закрепления его замком. Применение на линиях разного класса напряжения гирлянд из изоляторов одного и того же типа значительно упрощает организацию их массового производства и эксплуатацию. Важное достоинство тарельчатых изоляторов состоит в том, что при повреждении изоляционного тела, механическая прочность изолятора и, следовательно, всей гирлянды не нарушается и не происходит падения провода на землю.
На рис.1.3 приведена конструкция полимерного консольного стержневого изолятора КСК 120 – 6 – 3/0,6. Обозначение расшифровывается следующим образом: К – консольный, С – стержневой, К – оболочка из кремнийорганической резины, 120 – класс изолятора (нормированная разрушающая сила при растяжении, кН), 6 – нормированная разрушающая сила при изгибе, кН, 3 - номинальное напряжение контактной сети, кВ, 0,6 - длина пути утечки, м. Изолятор предназначен для изоляции подкосов и консолей контактной сети постоянного тока напряжением 3 кВ.
|
Дата добавления: 2015-04-01; просмотров: 2889;