Классификация газогорелочных устройств по способу сжигания газа. Устройство и принцип работы диффузионных, инжекционных, смесительных и комбинированных горелок.
Процесс горения газа состоит из трех последовательно протекающих стадий. Первая стадия представляет собой процесс смесеобразования, в результате которого обеспечивается физический контакт между топливом и окислителем. Вторая стадия — это подогрев смеси до температуры воспламенения. Третья стадия — химическая, в этой стадии протекают реакции горения газа. При сжигании заранее приготовленной газовоздушной смеси суммарная скорость процесса будет определяться скоростью подогрева и горения смеси. В этом случае стадия смесеобразования исключена и горение протекает по кинетическому принципу.
Приготовленная смесь должна иметь однородный состав с некоторым избытком воздуха ( >1). Таким образом, процесс кинетического горения определяется свойствами горючей смеси: энергией активации, концентрацией реагирующих веществ, коэффициентами теплопроводности и температуропроводности, т. е. физическими и кинетическими свойствами газовоздушной смеси. При горении в ламинарном потоке эти свойства полностью определяют интенсивность процесса. При горении в турбулентном потоке на суммарной скорости процесса начинают сказываться турбулентные его характеристики, причем тем в большей степени, чем сильнее турбулизация потока.
Кинетический процесс горения характеризуется малой устойчивостью, поэтому при сжигании газа таким способом необходимо применять приемы искусственной стабилизации фронта воспламенения. Если газ и воздух предварительно не перемешивают, а подают в горелку раздельно, смесеобразование протекает одновременно с горением и скорость процесса горения в целом определяется скоростью течения физической стадии, т. е. скоростью смесеобразования, ибо в этом случае «узким» местом процесса будет возникновение контакта между газом и воздухом. Такую область горения называют диффузионной, так как необходимый для процесса горения контакт между газом и воздухом осуществляется за счет молекулярной или турбулентной диффузии.
При сжигании газа по диффузионному принципу процесс смесеобразования совмещается с процессом горения в единую поточную систему. Как только достигается контакт между газом, и воздухом и образуется горючая смесь необходимого состава, сразу же начинается процесс горения. Так как при высоких температурах, господствующих в топочном пространстве, скорость химических реакций несоизмеримо больше скорости процесса смесеобразования, то суммарная скорость процесса в целом определяется скоростью образования горючей смеси. Таким образом, скорость диффузионного горения определяется аэродинамическими, диффузионными факторами и практически не зависит от физических и кинетических свойств смеси.
Одним из достоинств диффузионного метода сжигания газа является возможность регулирования процесса в широком диапазоне, ибо процесс горения определяется характером и интенсивностью смесеобразования. Процессом же смесеобразования довольно легко управлять путем изменения конструкции газогорелочной системы или введением в нее регулировочных элементов. В результате этого можно значительно сокращать размеры факела или, наоборот, предельно его вытягивать.
Для повышения интенсивности процесса диффузионного горения и получения короткого и компактного факела необходимо максимально интенсифицировать процесс смесеобразования. Этого достигают следующими способами: дроблением потоков газа и воздуха, закручиванием потока воздуха, направлением струи газа под углом к потоку воздуха, выбором оптимальных скоростей газа и воздуха, искусственной турбулизацией потоков. Используя указанные методы, повышающие интенсивность смесеобразования, можно получать факелы различных размеров и характеристик. С повышением интенсивности смесеобразования факел по своим характеристикам будет приближаться к кинетическому. Диффузионный процесс горения характеризуется большей устойчивостью, чем кинетический. Однако при больших форсировках применяют искусственные приемы стабилизации фронта воспламенения. .
Находит применение и смешанный принцип сжигания газа, когда горелка обеспечивает предварительное смешение газа только с частью необходимого воздуха, а остальной воздух поступает непосредственно к факелу. В этом случае кинетически выгорает только часть газа, смешанная с первичным воздухом. Оставшаяся часть газа, разбавленная продуктами горения, выгорает за счет кислорода вторичного воздуха, т. е. по диффузионному принципу. В частности, такой метод сжигания используется в атмосферных горелках. Факельное горение можно легко регулировать изменением коэффициента первичного воздуха. Так, уменьшая коэффициент первичного воздуха до нуля, можно перейти к чисто диффузионному горению, а увеличивая его до единицы, можно обеспечить сжигание газа по кинетическому принципу.
Все стадии процесса горения (смесеобразование, подогрев и горение) осуществляются в газовой горелке и в камере горения. Основные функции газовой горелки сводятся к подаче газа и воздуха в топку, смесеобразованию, стабилизации фронта воспламенения, обеспечению требуемой интенсивности процесса горения газа и минимальных концентраций токсичных газов в продуктах горения.
Для смешения газа с воздухом горелка имеет смесительное устройство. Если горение осуществляется по кинетическому принципу, то смеситель представляет собой самостоятельный элемент, в котором приготовляется однородная газовоздушная смесь. При сжигании газа диффузионным методом смесительное устройство создает только необходимые условия для протекания процесса смесеобразования с требуемой интенсивностью. Сам же процесс смешения полностью происходит в топочной камере или частично начинается на выходе из горелки и заканчивается в топке.
Другим элементом горелки является головка. Она обеспечивает выход газовоздушного потока в топочную камеру или воздушное пространство. Основное назначение головки — стабилизировать фронт воспламенения уже готовой или только что образовавшейся горючей смеси у устья горелки и предотвратить проскок и отрыв пламени.
Третий элемент горелки - огневая часть - представляет собой амбразуру или туннель, где частично или полностью протекает процесс горения. Огневая часть горелки одновременно служит и составной частью гопочной камеры. Огневое устройство горелки создает устойчивый очаг зажигания и стабилизирует процесс горения, предотвращая отрыв пламени. Горелка может не иметь огневого устройства, в этом случае устойчивость факела полностью обеспечивается головкой, а сам факел располагается непосредственно в топке или в открытом пространстве. Строгого разграничения функций между отдельными элементами горелки, а также между горелкой и топкой провести нельзя, так как ряд операций выполняется совместно горелкой и топкой.
Основным свойством горелки является осуществляемый ею метод сжигания газа, который в значительной степени зависит от степени подготовленности горючей смеси, выходящей из головки горелки. Именно этот признак следует рассматривать как основной и использовать для классификации горелок.
По способу подачи воздуха горелки подразделяются на:
1) эжекционные, в которых воздух засасывается энергией газовой струи (эжектирование воздухом газа применяют весьма редко);
2)бездутьевые, у которых воздух поступает в топку вследствиеразрежения;
3)дутьевые с подачей воздуха в топку с помощью вентилятора.
Эжекционные горелки иногда называют инжекционными. Основное назначение эжектора горелки состоит в засасывании необходимого количества воздуха из атмосферы. Это количество должно находиться в определенном соотношении с расходом газа, так как соотношение газа и воздуха в смеси зависит от осуществляемого метода сжигания газа.
По давлению газа горелки подразделяются на горелки низкого давления (до 5 кПа) и горелки среднего давления (5—300 кПа). Горелки с более высоким давлением широкого применения не имеют.
Дата добавления: 2015-04-15; просмотров: 5985;