Обучение нейросетей

Основная специфика предсказания временных рядов лежит в области предобработки данных. Процедура обучения отдельных нейросетей стандартена. Как всегда, имеющиеся примеры разбиваются на три выборки: обучающая, валидационная и тестовая. Первая используется для обучения, вторая - для выбора оптимальной архитектуры сети и/или для выбора момента остановки обучения. Наконец, третья, которая вообще не использовалась в обучении, служит для контроля качества прогноза обученной нейросети.

Однако для сильно зашумленных финансовых рядов существенный выигрыш в надежности предсказаний способно дать использование комитетов сетей. Обсуждением этой методики мы и закончим данную главу.

В литературе имеются свидетельства улучшения качества предсказаний за счет использования нейросетей с обратными связями. Такие сети могут обладать локальной памятью, сохраняющей информацию о более далеком прошлом, чем то, что в явном виде присутствует во входах. Рассмотрение таких архитектур, однако, увело бы нас слишком далеко от основной темы, тем более что существуют альтернативные способы эффективного расширения "горизонта" сети, за счет специальных способов погружения ряда, рассмотренных ниже.

Формирование пространства признаков

Ключевым для повышения качества предсказаний является эффективное кодирование входной информации. Это особенно важно для труднопредсказуемых финансовых временных рядов. Все рекомендации, описанные в главе о предобработке данных, применимы и здесь. Имеются, однако, и специфичные именно для финансовых временных рядов способы предобработки данных, на которых мы подробно остановимся в данном разделе.








Дата добавления: 2015-04-10; просмотров: 1084;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.