Экспериментально установлено, что степенной закон
(2.68)
является часто наиболее приемлемым, где К и т – константы материала при испытаниях в заданных условиях.
Рис. 13. Деформационные кривые сухой глины
(1, 2, 3 – соответственно при = 92, 29,13 МПа
В качестве примера на рис.13 показаны диаграммы , построенные для высушенной на воздухе глины при нескольких значения всестороннего давления , в табл. 1 – результаты обработки этих диаграмм.
Таблица 1
, МПа | Е, 103, МПа | , МПа | , МПа | K, МПа | m | , % |
0,4 | ||||||
1,1 | 0,4 | |||||
0,4 |
( - общая деформация до разрушения)
Параметры K и т определялись следующим образом. Кривые на рис. 13 перестраивались в логарифмических координатах , и после сравнения полученной прямой с зависимостью определялись искомые параметры.
При осевом нагружении цилиндрического образца изменяется и его поперечный размер, определяемый деформацией .
Величина v, равная отношению абсолютных значений поперечной деформации к продольной в упругой области при осевом нагружении образца, называется коэффициентом Пуассона.
Способность твердых тел сжиматься (уплотняться) или расширяться (разуплотняться) устанавливается диаграммой всестороннее давление – объемная деформация . Экспериментально установлено, что в широком диапазоне давлений зависимость можно принимать в виде
(2.69)
где - модуль объемного сжатия или расширения в зависимости от вида нагружения.
Определение модуля эквивалентно определению коэффициента Пуассона v, так как они связаны зависимостью
. (2.70)
Отсюда, в частности, следует, что для реальных тел коэффициент Пуассона не может превосходить значения 0,5, т.е. 0 < v < 0,5.
Если для какого-либо тела можно принять v = 0,5, то такое идеальное тело принято называть несжимаемым, так как согласно (2.70), .
Рис. 14. Возможные виды деформационных кривых и соответствующие им формы разрушений для образцов горных пород
Деформационная кривая может иметь разнообразный вид в зависимости от свойств материала и внешних условий. По этой кривой находят не только основные механические параметры тела, но и устанавливают определяющее его свойство – меру пластичности. Существуют различные классификации тел. Рекомендуется, например, следующая, довольно полная классификация горных пород [Справочник физических констант горных пород под редакцией С. Кларка]:
а) очень хрупкая (рис.14, кривая 1), когда деформация, по существу, упругая до внезапного разрыва, характеризуемого образованием трещин отрыва перпендикулярно к наименьшему главному напряжению; накопленная при этом деформация не выше 1%;
б) хрупкая (кривая 2), когда наблюдается малая пластическая деформация до разрыва и образуются трещины отрыва и скола; накопленная деформация составляет 1 – 5%;
в) умеренно хрупкая (кривая 3), когда поведение промежуточное между хрупким и текучим, пик обозначает нарушение без общей потери связности, а разрушение происходит в результате образования трещин скола; накопленная деформация составляет 2 – 8%;
г) умеренно пластическая (кривая 4), когда разрушение сопровождается рассеянной деформацией, а накопленная деформация составляет 5 – 10%;
д) идеально пластическая (кривая 5), когда хорошо выражен предел текучести, сменяющийся постоянным однородным течением; деформация до разрыва более 10%;
е) пластическая с упрочнением (кривая 6), когда предел текучести может быть плохо выражен и процесс сопровождается работой упрочнения; деформация до разрыва более 10%.
Принадлежность горной породы к одному из приведенных типов определяет расчетную математическую модель и предельное состояние. В принципе, этой классификацией можно пользоваться при изучении любого твердого тела.
Среднестатистические значения опытных величин , соответствующие различным видам (сжатие, растяжение, изгиб, сдвиг) и условиям (температура, давление, влажность, скорости нагружения и др.) испытаний, принимаются в качестве основных механических параметров при кратковременных нагружениях изотропных твердых тел. Важной задачей экспериментального исследования является установление аналитической зависимости этих параметров от указанных факторов.
Многочисленными испытаниями установлено, что рост всестороннего давления и скорости деформирования способствует увеличение параметров и и переходу от хрупкого поведения к пластическому, а рост температуры и влажности, снижая предел текучести, препятствует образованию трещин и усиливает текучесть без заметного изменения формы деформационной кривой . Особое значение эти зависимости имеют для горных пород.
В практике инженерных расчетов чаще других используется следующая эмпирическая зависимость предельного значения ( или ) от среднего нормального напряжения , предложенная Э. Хоеком:
, (2.71)
где с – значение при ; a, b – константы, являющиеся функциями температуры, влажности и др.
При с = 0 получится зависимость, впервые предложенная Д. Франклином.
Для многих горных пород хорошей аппроксимацией может оказаться линейная зависимость, называемая критерием Мора,
(2.72)
Примером влияния влажности W на механическую прочность пород может служит понтическая глина. Для этой глины линейная аппроксимация (2.72) вполне приемлема до давления =50 МПа, а зависимость параметров с и а от влажности показана ниже.
W, % | ||||
c, МПа | ||||
а | 1,4 | 4,26 | 0,5 |
Инженерные расчеты удобно проводить, когда зависимость параметров с, а, b, равно как и K и т в формуле (2.68), от температуры и влажности принята в аналитической форме. Однако таких общепринятых норм в литературе не предложено. Поэтому необходимо руководствоваться соображениями удобства при расчетах с требуемой точностью. Например, в формуле (2.68) часто бывает удобным фиксировать показатель т, а коэффициент K считать линейной функцией, или экспонентой.
Дата добавления: 2015-03-07; просмотров: 886;