Уравнение неразрывности

 

Выведем вначале уравнение неразрывности массы вещества при его одномерном прямолинейном движении в пласте. Масса вещества плотностью в элементе пласта (рис. 27) длиной , толщиной и шириной , измеряемой в направлении, перпендикулярном к плоскости при пористости пласта , составит

(3.11)

 

 
 

 

Рис. 27. Схема элементарного объема прямолинейного пласта

Рис. 28. Схема элементарного пласта в трехмерном случае

 

Если считать, что в элемент пласта через его левую грань поступает вещество с массовой скоростью , вытесняется из элемента с массовой скоростью и , а накопленный объем его за время , получим с учетом того, что в элемент вошло больше вещества, чем из него вышло:

. (3.12)

Из (3.12) имеем

(3.13)

при

(3.14)

Уравнение (3.14) и есть уравнение неразрывности массы вещества в пласте при одномерном прямолинейном движении насыщающего его вещества. Чтобы получить такое уравнение для трехмерного случая, необходимо рассмотреть баланс массы в объемном элементе пласта (рис. 28). Рассматривая массовые скорости поступления вещества в куб и вытеснения из него, а также накопленный объем его в кубе, получим

. (3.15)

 

Уравнение (3.15) можно записать также в следующем общем виде:

. (3.16)

Уравнения (3.15), (3.16) — уравнения неразрывности массы вещества во время его движения при трехмерном измерении. Если в пласте одновременно движутся несколько веществ, находящихся как в газовой, так и в жидкой фазе, составляют уравнения неразрывности массы каждого вещества (компонента) в соответствующих фазах.

 








Дата добавления: 2015-02-28; просмотров: 713;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.