Нарушение функционирования и повреждение клетки. Местные реакции организма на повреждение
Нарушение жизнедеятельности организма человека при различных экстремальных состояниях и заболеваниях всегда, так или иначе, связано с изменением функционирования клеток. Клетка является структурно-функциональной единицей тканей и органов. В ней протекают процессы, лежащие в основе энергетического и пластического обеспечения структур и функций тканей. Под действием неблагоприятных факторов окружающей среды, нарушение функционирования клеток может приобретать стойкий характер и быть обусловленным их повреждением. Патология всегда начинается с повреждения, когда адаптационные возможности становятся несостоятельными. Любой патологический процесс протекает с большей или меньшей степенью и масштабом повреждения клеток, которое выражается в определенном нарушении их структуры и функций. Исходя из этого, под повреждением клетки понимают такие изменения ее структуры, обмена веществ, физико-химических свойств и функций, которые ведут к нарушению ее жизнедеятельности и которые сохраняются после удаления повреждающего агента. Однако, принимая во внимание, что организм, как система, есть совокупность элементов и связей между ними, то природу болезни необходимо рассматривать с двояких позиций - структурно-метаболических и информационных, поскольку она связана как с повреждением самих клеток, их исполнительного клеточного аппарата, так и с нарушением информационных процессов - сигнализации, рецепции и межклеточных связей, т.е. с дизрегуляцией, а по терминологии Г.Н. Крыжановского с дизрегуляторной патологией. В то же время, несмотря на разнообразие патогенных факторов, действующих на клетки, они отвечают принципиально однотипными реакциями, в основе которых лежат тканевые механизмы клеточной альтерации. Таким образом, повреждение следует рассматривать как типовой патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, структурой целостности клетки, а также ее функциональной способности.
Переходя к конкретным аспектам патофизиологии повреждения, исходя из учения основоположника клеточной патологии Р. Вирхова, учитывая «приоритет повреждения элементов над расстройством связи», в начале рассмотрим типовые нарушения внутриклеточного гомеостаза, патохимические и патофизиологические аспекты повреждения клетки, ее исполнительного аппарата.
Причины нарушения функционирования и повреждения клетки
Непосредственной причиной нарушения функционирования клетки служат изменения в ее окружении, в то время как повреждение клетки вызвано действием на нее повреждающих агентов. Повреждение клетки, сущность которого составляют нарушения внутриклеточного гомеостаза, может быть результатом непосредственного (прямых) или опосредованного, вследствие нарушения межклеточного взаимодействия, постоянства внутренней среды самого организма (гипоксия, ацидоз, алкалоз, гипогликемия, гиперкалиемия, повышение содержания в организме конечных продуктов метаболизма), воздействия множества патогенных факторов, которые подразделяются на три основные группы: физического, химического и биологического характера.
Среди факторов физического характера причинами повреждения клеток наиболее часто являются следующие:
- механические воздействия: они обусловливают нарушение структуры плазмолеммы и мембран субклеточных образований;
- температурный фактор: повышенная температура среды, в которой находится клетка, до 45-50°С и более может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры может обусловить существенное замедление или необратимое прекращение метаболических процессов в клетке, кристаллизацию внутриклеточной жидкости и разрыв мембран;
- изменения осмотического давления в клетке: накопление в ней продуктов неполного окисления органических субстратов, а также избытка ионов сопровождается током жидкости в клетку по градиенту осмотического давления, набуханием ее и растяжением (вплоть до разрыва) ее плазмолеммы и мембран органелл. Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде ведет к потере клеткой жидкости, ее сморщиванию (пикнозу) и нередко к гибели;
- воздействие ионизирующей радиации, обусловливающей образование свободных радикалов и активацию перекисных свободно-радикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток;
- гравитационные, электромагнитные факторы.
Повреждение клеток нередко вызывают воздействия факторов химической природы. К их числу относятся разнообразные вещества экзогенного и эндогенного происхождения: кислоты, щелочи, соли тяжелых металлов, яды растительного и животного происхождения, продукты нарушенного метаболизма. Так, цианиды подавляют активность цитохромоксидазы. Этанол и его метаболиты ингибируют многие ферменты клетки. Вещества, содержащие соли мышьяка, угнетают пируватоксидазу. Неправильное применение лекарственных средств также может привести к повреждению клеток. Например, передозировка строфантина обусловливает значительное подавление активности К+ - Na+ -АТФазы сарколеммы клеток миокарда, что ведет к дисбалансу интрацеллюлярного содержания ионов и жидкости.
Важно, что повреждение клетки может быть обусловлено как избытком, так и дефицитом одного и того же фактора. Например, избыточное содержание кислорода в тканях активирует процесс перекисного окисления липидов (ПОЛ), продукты которого повреждают ферменты и мембраны клеток. С другой стороны, снижение содержания кислорода обусловливает нарушение окислительных процессов, понижение образования АТФ и, как следствие, расстройство функций клетки.
Частыми причинами повреждения клеток являются факторы биологического происхождения: вирусы, риккетсии, микробы, паразиты, грибки. Продукты их жизнедеятельности вызывают расстройство функций клеток, нарушают течение в них метаболических реакций, проницаемость или даже целостность мембран, подавляют активность клеточных ферментов.
Повреждение клеток нередко обусловливается факторами иммунных и аллергических процессов. Они могут быть вызваны, в частности, сходством антигенов, например, микробов и клеток организма.
Повреждение может быть также результатом образования антител или влияния Т-лимфоцитов, действующих против неизмененных клеток организма вследствие мутации в геноме В- или Т-лимфоцитов иммунной системы.
Важную роль в поддержании метаболических процессов в клетке играют вещества, поступающие в нее из окончаний нейронов, в частности, нейромедиаторы, трофогены, нейропептиды. Уменьшение или прекращение их транспорта является причиной расстройства обмена веществ в клетках, нарушения их жизнедеятельности и развития патологических состояний, получивших название нейродистрофий.
Кроме указанных факторов, повреждение клеток нередко бывает обусловлено значительно повышенной функцией органов и тканей. Например, при длительной чрезмерной физической нагрузке возможно развитие сердечной недостаточности в результате нарушения жизнедеятельности кардиомиоцитов.
Повреждение клетки может быть результатом действия не только патогенных факторов, но и следствием генетически запрограммированных процессов. Примером может служить гибель эпидермиса, эпителия кишечника, эритроцитов и других клеток в результате процесса их старения. К механизмам старения и смерти клетки относят постепенное необратимое изменение структуры мембран, ферментов, нуклеиновых кислот, истощение субстратов метаболических реакций, снижение устойчивости клеток к патогенным воздействиям.
По происхождению все причинные факторы повреждения клетки делят на: экзогенные и эндогенные; инфекционного и неинфекционного генеза.
Общие механизмы повреждения клеток
В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим. В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым.
Выделяются два патогенетических варианта повреждения клеток.
Насильственный вариант. Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.
Цитопатический вариант. Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях становятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, при голодании, гиповитаминоз, нейротрофическое, при антиоксидантной недостаточности, при генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, интенсивность возмущений, а, следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, миокардиоциты).
На уровне клетки повреждающие факторы «включают» несколько патогенетических звеньев. К их числу относят:
- расстройство процессов энергетического обеспечения клеток;
- повреждение мембран и ферментных систем;
- дисбаланс ионов и жидкости;
- нарушение генетической программы и/или ее реализации;
- расстройство механизмов регуляции функции клеток.
Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, ее доставки и использования.
Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем (АТФазы актомиозина, К+ - Na+ - зависимой АТФазы плазмолеммы, Mg2+-зависимой АТФазы «кальциевой помпы» саркоплазмати-ческого ретикулума и др.), баланса ионов и жидкости, снижения мембранного потенциала, а также механизмов регуляции клетки.
Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, что основные свойства клетки в существенной мере зависят от состояния ее мембран и связанных с ними энзимов.
Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация перекисного окисления их компонентов. Образующиеся в больших количествах радикалы кислорода (супероксид и гидроксильный радикал) и липидов вызывают: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране — т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Указанные процессы, в свою очередь, обусловливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения нервного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.
В норме состав и состояние мембран модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации, проникновению ионов кальция в клетку). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.
В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфатидилхолин, фосфатидил-этаноламин, фосфатидилсерин. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих - как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи - означает «оба», «два»). Накопление в большом количестве амфифилов в мембранах, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.
Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.
Следствием дисбаланса ионов является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнцефалограммы при нарушении структуры и функций нейронов головного мозга.
Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Это может проявляться гипергидратацией клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжения, нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.
Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и/или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, дерепрессия патогенных генов (например, онкогенов), подавление активности жизненно важных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки). Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы, главным образом, в процессе клеточного деления при митозе или мейозе.
Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:
- на уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;
- на уровне клеточных т.н. «вторых посредников» (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующихся в ответ на действие «первых посредников» - гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиомиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;
- на уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.
Рассмотрев патохимические аспекты повреждения клетки, необходимо не забывать, что проблема клеточного повреждения имеет и другую, очень важную сторону - информационный аспект проблемы повреждения клетки. Связь между клетками, те сигналы, которыми они обмениваются тоже могут быть источниками болезни.
В большинстве случаев клетки в организме управляются химическими регуляторными сигналами, а именно гормонами, медиаторами, антителами, субстратами, ионами. Недостаток или отсутствие того или иного сигнала, как и избыток, может воспрепятствовать включению тех или иных адаптивных программ или способствовать излишне интенсивному, а, возможно, ненормально долгому их функционированию, что приводит к определенным патологическим последствиям. Особый случай представляет достаточно распространенная ситуация, когда клетка ошибочно принимает один сигнал за другой - так называемая мимикрия биорегуляторов, приводящая к серьезным регуляторным расстройствам. Примерами болезней, вызванных патологией сигнализации, могут служить: паркинсонизм, квашиоркор, инсулинозависимый сахарный диабет ( патология, обусловленная дефицитом сигнала), болезнь фон Базедова, синдром Иценко-Кушинга, ожирение (патология, обусловленная избытком сигнала). Особенно ярко видна патогенность избытка субстратов на примере ожирения.
В ряде случаев, даже при адекватной сигнализации, клетка не в состоянии ответить должным образом, если она «слепа и глуха» по отношению к данному сигналу. Именно такая ситуация создается при отсутствии или дефиците рецепторов, соответствующих какому-либо биорегулятору. В частности, примером такой патологии может служить семейная наследственная гиперхолестеринемия, патогенез которой связан с дефектом белка-рецептора, ответственного за распознавание клетками сосудистой стенки и некоторых других тканей и органов белкового компонента липопротеинов низкой и очень низкой плотности - апопротеина В, а также инсулинрезистивная форма сахарного диабета.
Однако, даже при адекватной сигнализации и правильном распознавании сигналов клеточными рецепторами, клетки не в состоянии подключить надлежащие адаптационные программы, если отсутствует передача информации от рецепторов поверхностной мембраны внутрь клетки. По современным представлениям механизмы, опосредующие внутриклеточную передачу сигнала на геном клетки, разнообразны. Особое значение имеют пути пострецепторной передачи сигналов в клетке через систему G-белков (гуанозинтрифосфатсвязывающих белков). Эти белки - передатчики занимают ключевое положение в обмене информацией между поверхностно раположенными на клеточных мембранах рецепторами и внутриклеточным регуляторным аппаратом, потому что они способны интегрировать сигналы, воспринимаемые несколькими различными рецепторами, и в ответ на определенный рецепторно-опосредованный сигнал могут включать множество различных эффекторных программ, вводя в действие сеть различных внутриклеточных модуляторов, посредников, таких как цАМФ и цГМФ.
Неадекватное использование клеткой своих адаптационных возможностей при ряде наследственных и приобретенных болезней может быть результатом сбоев в работе не только пострецепторных информационных механизмов, но и дефектом генетических программ и/или механизмов их реализации (в результате повреждения мутациями ДНК, возникновения хромосомных аномалий). Из-за этого они либо не реализуются, либо дают неадекватный или несоответствующий ситуации результат.
Основные проявления повреждений клетки
Дистрофии. Под дистрофиями (dys - нарушение, расстройство, trophe- питание) понимают нарушения обмена веществ в клетках и тканях, сопровождающиеся расстройствами их функций, пластических проявлений, а также структурными изменениями, ведущими к нарушению их жизнедеятельности.
Основными механизмами дистрофий являются:
- синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида;
- избыточная трансформация одних соединений в другие, например, жиров и углеводов в белки, углеводов в жиры;
- декомпозиция (фанероз), например, белково-липидных комплексов мембран;
- инфильтрация клеток и межклеточного вещества, органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.
К числу основных клеточных дистрофий относят белковые (диспротеинозы), жировые (липидозы), углеводные и минеральные.
Дисплазии (dys - нарушение, расстройство, plaseo- образую) представляют собой нарушение процесса развития клеток, проявляющееся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.
Причиной дисплазии является повреждение генома клетки. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения, в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраниться при прекращении действия причинного фактора.
Основным механизмом дисплазии является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Структурными признаками дисплазии являются изменения величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму («клетки-монстры»), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов. В качестве примеров дисплазии клеток можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при патологии гемоглобина, многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе Реклингхаузена. Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.
Изменение структуры и функций клеточных органелл при повреждении клетки. Повреждение клетки характеризуется большим или меньшим нарушением структуры и функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаки повреждения тех или иных органелл.
При действии патогенных факторов отмечается уменьшение числа митохондрий по отношению к общей массе клетки. Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий является уменьшение или увеличение их размеров и формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов внутри клетки.
При патогенных воздействиях высвобождение и активация ферментов лизосом может привести к «самоперевариванию» (аутолизу) клетки.
При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопровождаются снижением интенсивности процесса синтеза белка в клетке.
Повреждение эндоплазматической сети и аппарата Гольджи сопровождается расширением канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости. Имеет место очаговая деструкция мембран канальцев сети, их фрагментация.
Повреждение ядра сочетается с изменением его формы, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двуконтурности или разрывами ядерной оболочки.
Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коагуляцию белка, образование «включений», не встречающихся в норме. Изменение состояния цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих и других влияний на клетку.
Некроз и аутолиз. Некроз (гр. necros - мертвый) - гибель клеток и тканей, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу, называют некробиозом или патобиозом. По И.В. Давыдовскому некробиоз - это процесс отмирания клеток. Примерами патобиоза могут служить процессы омертвления тканей при нейротрофических расстройствах в результате денервации тканей, вследствие длительной венозной гиперемии или ишемии. Некробиотические процессы протекают и в норме, являясь завершающим этапом жизненного цикла многих клеток. Большинство погибших клеток подвергаются аутолизу, т.е. саморазрушению структур. Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках.
В процессе лизиса поврежденных клеток могут принимать участие и другие клетки - фагоциты, а также микроорганизмы. В отличие от аутолитического механизма последний называют гетеролитическим. Таким образом, лизис некротизированных клеток (некролиз) может обеспечиваться ауто- и гетеролитическими процессами, в которых принимают участие ферменты и другие факторы как погибших, так и контактирующих с ними живых клеток.
Специфические и неспецифические изменения при повреждении клеток. Любое повреждение клетки вызывает в ней комплекс специфических и неспецифических изменений.
Под специфическими понимают изменения свойств клеток, характерные для данного фактора при действии его на различные клетки, либо свойственные лишь данному виду клеток при воздействии на них повреждающих агентов различного характера. Так, действие на любую клетку механических факторов сопровождается нарушением целостности ее мембран. Под влиянием разобщителей процесса окисления и фосфорилирования снижается или блокируется сопряжение этих процессов. Высокая концентрация в крови одного из гормонов коры надпочечников - альдостерона обусловливает накопление в различных клетках избытка ионов натрия. С другой стороны, действие повреждающих агентов на определенные виды клеток вызывает специфические для них изменения. Например, влияние различных патогенных факторов на мышечные клетки сопровождается развитием контрактуры миофибрилл, на нейроны — формированием так называемого потенциала повреждения, на эритроциты - гемолизом и выходом из них гемоглобина.
Повреждение всегда сопровождается комплексом и неспецифических, стереотипных изменений в клетках. Они наблюдаются в различных видах клеток при действии на них разнообразных агентов. К числу часто встречающихся неспецифических проявлений альтераций клеток относятся ацидоз, чрезмерная активация свободно-радикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, повышение сорбционных свойств клеток.
Выявление комплекса специфических и неспецифических изменений в клетках органов и тканей дает возможность судить о характере и силе действия патогенного фактора, о степени повреждения, а также об эффективности применяемых с целью лечения медикаментозных и немедикаментозных средств.
Механизмы компенсации при повреждении
Действие на клетку патогенных факторов и развитие повреждения сопровождается активацией или включением реакций, направленных на устранение либо уменьшение степени повреждения и его последствий. Комплекс этих реакций обеспечивает приспособление клетки к изменившимся условиям ее жизнедеятельности. К числу основных приспособительных механизмов относят реакции компенсации, восстановления и замещения утраченных или поврежденных структур и нарушенных функций, защиты клеток от действия патогенных агентов, а также регуляторное снижение их функциональной активности. Весь комплекс таких реакций условно можно разделить на две группы: внутриклеточные и внеклеточные (межклеточные).
К числу основных внутриклеточных механизмов компенсации при повреждении можно отнести следующие.
Компенсация нарушений процесса энергетического обеспечения клеток. Одним из способов компенсации нарушений энергетического обмена вследствие поражения митохондрий является интенсификация процесса гликолиза. Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизация энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФ-аз), а также снижение функциональной активности клетки. Последнее способствует уменьшению расхода АТФ.
Защита мембран и ферментов клеток. Одним из механизмов защиты мембран и ферментов клеток является ограничение свободно-радикальных реакций и процессов перекисного окисления липидов ферментами антиоксидантной защиты (супероксиддисмутазой, каталазой, глютатионпероксидазой). Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности, ферментов лизосом, может быть активация буферных систем клетки. Это обусловливает уменьшение степени внутриклеточного ацидоза и, как следствие, избыточной гидролитической активности лизосомальных энзимов. Важную роль в защите мембран и ферментов клеток от повреждения играют ферменты микросом, обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д.
Компенсация дисбаланса ионов и жидкости. Компенсация дисбаланса содержания ионов в клетке может быть достигнута путем активации механизмов энергетического обеспечения ионных «насосов», а также защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса имеет действие буферных систем. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать восстановлению оптимальных соотношений ионов К+, Na+ и Са++. Снижение степени дисбаланса ионов в свою очередь, может сопровождаться нормализацией содержания внутриклеточной жидкости.
Устранение нарушений в генетической программе клеток. Повреждения участка ДНК могут быть обнаружены и устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обнаруживают и удаляют измененный участок ДНК (эндонуклеазы и рестриктазы), синтезируют нормальный фрагмент нуклеиновой кислоты взамен удаленного (ДНК-полимеразы) и встраивают этот вновь синтезированный фрагмент на место удаленного (лигазы). Помимо этих сложных ферментных систем репарации ДНК в клетке имеются энзимы, устраняющие «мелкомасштабные» биохимические изменения в геноме. К их числу относятся деметилазы, удаляющие метильные группы, лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излучения или свободных радикалов.
Компенсация расстройств внутриклеточных метаболических процессов, вызванных нарушением регуляторных функций клеток. Сюда относят: изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки, а также чувствительности рецепторов к этим веществам. Количество рецепторов может меняться благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависит характер и выраженность ответа на них.
Избыток или недостаток гормонов и нейромедиаторов или их эффектов может быть скомпенсирован также на уровне вторых посредников - циклических нуклеотидов. Известно, что соотношение цАМФ и цГМФ изменяется не только в результате действия внеклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности, фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).
Снижение функциональной активности клеток. В результате снижения функциональной активности клеток обеспечивается уменьшение расходования энергии и субстратов, необходимых для осуществления пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функции. К числу главных механизмов, обеспечивающих временное понижение функции клеток, можно отнести уменьшение эфферентной импульсации от нервных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций.
Приспособление клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие приспособительное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии, гипотрофии (см. раздел «Структурные основы компенсации»).
Регенерация (regeneratio - возрождение; восстановление) означает возмещение клеток и/или ее отдельных структурных элементов взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют так называемую клеточную и внутриклеточную формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Внутриклеточная регенерация проявляется восстановлением органелл - митохондрий, ядра, эндоплазматической сети и других вместо
поврежденных или погибших.
Гипертрофия (hyper - чрезмерно, увеличение; trophe - питаю) представляет собой увеличение объема и массы структурных элементов, в частности, клеток. Гипертрофия неповрежденных органелл клетки компенсирует нарушение или недостаточность функций ее поврежденных элементов.
Гиперплазия (hyper - чрезмерно; plaseo - образую) характеризуется увеличением числа структурных элементов, в частности, органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба процесса обеспечивают не только компенсацию структурного дефекта, но и возможность повышенного функционирования клетки.
Межклеточные (внеклеточные) механизмы взаимодействия и приспособления клеток при их повреждении. В пределах тканей и органов клетки не разобщены. Они взаимодействуют друг с другом путем обмена метаболитами, физиологически активными веществами, ионами. В свою очередь взаимодействие клеток тканей и органов в организме в целом обеспечивается функционированием систем лимфо- и кровообращения, эндокринными, нервными и иммунными влияниями.
Характерной чертой межклеточных (внеклеточных) механизмов адаптации является то, что они реализуются, в основном, при участии клеток, которые не подвергались непосредственному действию патогенного фактора (например, гиперфункция кардиомиоцитов за пределами зоны некроза при инфаркте миокарда).
По уровню и масштабу такие реакции при повреждении клеток можно разделить на органно-тканевые, внутрисистемные, межсистемные. Примером приспособительной реакции органно-тканевого уровня может служить активация функции неповрежденных клеток печени или почки при повреждении клеток части органа. Это снижает нагрузку на клетки, подвергшиеся патогенному воздействию, и способствует уменьшению степени их повреждения. К числу внутрисистемных реакций относится сужение артериол при снижении работы сердца (например, при инфаркте миокарда), что обеспечивает и предотвращает (или уменьшает степень) повреждения их клеток.
Вовлечение в приспособительные реакции нескольких физиологических систем наблюдается, например, при общей гипоксии. При этом активируется работа систем дыхания, кровообращения, крови и тканевого метаболизма, что снижает недостаток кислорода и субстратов метаболизма в тканях, повышает их утилизацию и уменьшает благодаря этому степень повреждения их клеток (смотри раздел «Гипоксия»).
Активация внутриклеточных и межклеточных механизмов приспособления при повреждении, как правило, предотвращает гибель клеток, обеспечивает выполнение ими функций и способствует ликвидации последствий действия патогенного фактора. В этом случае говорят об обратимых изменениях в клетках. Если сила патогенного агента велика и/или защитно-приспособительные недостаточны, развивается необратимое повреждение клеток, и они погибают.
Дата добавления: 2015-02-19; просмотров: 1554;