Принцип аргумента

Рассмотрим уравнение:

,

здесь li – корни данного уравнения

.

Каждому корню li на комплексной плоскости соответствует некоторая точка. Если соединить точку с нулем, то можно говорить о векторе.

Длина вектора равна модулю комплексного числа li, а угол, образуемый положительной действительной осью и вектором li, есть аргумент комплексного числа li.

Придадим l значение jw (l=jw). Считаем движение против часовой стрелки положительным, тогда для корней, находящихся в левой части комплексной плоскости при изменении частоты , вектор (l-li) описывает угол +p.

Для корней, находящихся в правой полуплоскости, вектор (l-li) при изменении частоты опишет угол -p.

Считаем, что порядок системы п-ый , и m корней положительно, значит отрицательные – п-т. Тогда суммарный угол поворота всех векторов составит следующее выражение:

.

 








Дата добавления: 2015-02-16; просмотров: 1021;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.