Потенциальной яме» е бесконечно
высокими «стенками»
Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)
где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 296).
Рис. 296
Уравнение Шредингера (217.5) для стационарных состояний в случае одномерной задачи запишется в виде
(220.1)
По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = l)непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид
(220.2)
В пределах «ямы» (0 £ х £ l) уравнение Шредингера (220.1) сведется к уравнению
где
Общее решение дифференциального уравнения (220.3):
Y(x) = Asin kx + Bcos kx.
Так как по (220.2) y(x) = 0, то B = 0. Тогда
(220.5)
Условие (220.2) Y(l) = Asin kl выполняется только при kl = np, где n — целые числа, т. е. необходимо, чтобы
(220.6)
Из выражений (220.4) и (220.6) следует, что
(220.7)
т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях , зависящих от целого числа n. Следовательно, энергия Enчастицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется. Квантованные значения энергии Enназываются уровнями энергии, а число л, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне En, или, как говорят, частица находится в квантовом состоянии n.
Подставив в (220.5) значение k из (220.6), найдем собственные функции:
Постоянную интегрирования А найдем из условия нормировки (216.3), которое для данного случая запишется в виде
В результате интегрирования получим
а собственные функции будут иметь вид
(220.8)
Графики собственных функций (220.8), соответствующие уровням энергии (220.7) при n = 1, 2, 3, приведены на рис. 297,а.На рис. 297,б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная |Yn(x)|2 = Yn(x) Y*n(x) для n = 1, 2 и 3.
Рис. 297
Из рисунка следует, что, например, в квантовом состоянии с n = 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.
Из выражения (220.7) вытекает, что энергетический интервал между двумя сосед ними уровнями равен
(220.9)
Например, для электрона при размерах ямы l = 10-1 м (свободные электроны в металле) DEn » 10-35 n Дж »10-16 n эВ, т. е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l = 10-10 м), то для электрона DEn » 10-17 n Дж »102 n эВ, т. е. получаются явно дискретные значения энергии (линейчатый спектр). Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.
Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная p2ℏ2/(2ml2). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Аде частицы в «яме» шириной l равна Dx = l. Тогда, согласно соотношению неопределенностей (215.1), импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Dр » h/l. Такому разбросу значений импульса соответствует кинетическая энергия Emin » (Dp)2/(2m) = h2/(2ml2). Все остальные уровни (n > 1) имеют энергию, превышающую это минимальное значение.
Из формул (220.9) и (220.7) следует, что при больших квантовых числах (n >> 1) DEn/En » 2/n << 1, т. е. соседние уровни расположены тесно: тем теснее, чем больше n. Если n очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность — сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.
Более общая трактовка принципа соответствия, имеющего огромную роль в со временной физике, заключается в следующем: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных пре дельных случаях новая теория переходит в старую. Так, формулы кинематики и динамики специальной теории относительности переходят при v<<с в формулы механики Ньютона. Например, хотя гипотеза де Бройля приписывает волновые свойства всем телам, но в тех случаях, когда мы имеем дело с макроскопическими телами, их волновыми свойствами можно пренебречь, т. е. применять классическую механику Ньютона.
Дата добавления: 2015-02-13; просмотров: 890;