Теорема про активний двополюсник.

Струм у вітці а, б електричного кола не зміниться, якщо активний двопо-люсник(Рис. 42, а), до якого під’єднана вітка, замінити еквівалентним джере-лом, ЕРС якого дорівнює напрузі розриву на полюсах активного двопо-люсника, а внутрішній опір дорівнює вхідному опору відносно полюсів а, б пасивного двополюсника, одержаного із даного активного двополюсника вида-ленням джерел енергії (Рис. 42, б).

Доведемо теорему.

1. Від’єднуємо опір навантаження (режим розриву - р) (Рис. 43, а) і виз-начаємо напругу розриву активного двополюсника, яка дорівнює еквіва-лентній ЕРС двополюсника. Якщо послідовно з навантаженням ввімкнути зустрічно дві однакові ЕРС і (Рис. 43, б), що дорівнюють напрузі розри-ву, струм у вітці не зміниться.

2. Розраховуємо коло (Рис. 43, б)методом накладання, для цього розгляне-мо два часткові кола. У перше коло входять всі джерела активного двопо-люсника і ЕРСЕ2 (Рис. 44, а), у друге - пасивний двополюсник (без джерел енергії) і ЕРС Е1 (Рис. 44, б).

Струм , тому що при розриві , отже увімкнення резистора не викликає появу струму. Оскільки , то струм , тобто дорівнює струму у другому частковому колі (Рис.44, б). Двополюсник можна замінити вхідним еквівалентним опором, при цьому коло спроститься (Рис.45, а). ЕРС є ЕРС еквівалентного генератора , а вхідний опір -внутрішнім опором еквівалентного генератора (Рис. 45, б).

Струм у вітці

Алгоритм розрахунку електричного кола методом еквівалентного генератора.

1. Від’єднуємо вітку, в якій визначається струм.

2. Будь-яким із відомих методів розрахувуємо коло, що залишилося (режим-розриву активного двополюсника) і визначаємо напругуміж точками а, б, до яких була під’єднана вітка.

3. Видаляємо із кола джерела енергії, замінивши їх внутрішніми опорами, виз-начаємо вхідний опір відносно точок а, б.

4. Визначаємо струм у вітці за формулою:

5. Якщо у вітці, струм якої розраховуємо, є джерело ЕРС (Рис. 46, а), то розра-хунок ведеться за формулою:

6. Якщо у вітці, струм якої розраховується, відсутні опір і ЕРС (коротке зами-кання вітки) (Рис. 46, б) то:

,звідки: .

Приклад 5. Визначити струм у колі так званого моста (Рис.П5, а).

 

1. Від’єднуємо вітку зі струмом (Рис. П5, б).

2. Розраховуємо коло, що залишилося (режим розриву активного двопо-люсника) і визначаємо напругу між точками а, б, до яких була під’єднана вітка.

Після спрощення виразу одержуємо: .

Очевидно, якщо то , (мостова схема врівноважена).

3. Видаляємо із схеми , замінивши її внутрішнім опором (закоротка), визначаємо вхідний опір відносно точок а, б (Рис. П5, в). Опори і , і з’єднані паралельно, а між собою - послідовно.

4. Струм визначається за формулою:

Приклад 6.

І) Розрахувати струм у вітці з ЕРС (Рис. П6, а).

ІІ) Визначити, якою повинна бути ЕРС , щоб струм при тому ж

значенні змінив свій напрям.

ІІІ) Знайти залежність між струмом у другій вітці і опором у

четвертій вітці при незмінних всіх інших параметрах.

I. Розраховуємо струм методом еквівалентного генератора.

 

1. На Рис. П6, в відімкнена друга вітка. Коло, що залишилося, розраховуємо методом контурних струмів, які показані на схемі. Струм

Результат розв’язання системи рівнянь:

Струми у вітках схеми:

Напругу , що дорівнює ЕРС еквівалентного генератора , для пере-вірки правильності розв’язку знаходимо двома незалежними шляхами.

Самостійно перевірте цю напругу іншим шляхом, наприклад:

 

2).Вхідний опір між точками а, б, що дорівнює опору еквівалентного гене-ратора, знаходимо видаленням з активного двополюсника джерел енергії (Рис. П6.1, а).

Для спрощення схеми «трикутник» перетворюється на «зірку» (Рис. П6.1, б).

У спрощеній схемі до паралельних віток з послідовно з’єднаними опора-ми і під’єднаний послідовно опір Вхідний еквівалентний опір відносно точок а, б:

.).

3). Струм . Це видно із схеми ек-вівалентного генератора (Рис. П6, б)

Результат такий же, як і при розрахунку іншими методами.

ІІ. Для зміни напряму струму визначаємо нову ЕРС із останньої фор-мули: ;

звідки:

 

ІІІ. В електричних колах зміна будь-якого одного параметра (ЕРС, опору резистора) викликає зміну напруг та струмів у вітках схеми. В лінійних колах при цьому залежність між напругами і струмами у вітках – лінійна, яка в загальному випадку описується функцією .

Для визначення шуканої залежності спочатку визначаємо за-лежність між струмами та , а потім за методом еквіва-лентного генератора визначаємо залежність між струмом та .

Із прикладу 3 відомо, що: .Залежність між ними виразимо рівнянням: Визначаємо коефіцієнти А, В, знаючи струми для двох значень змінюваного опору .

1). При - (розрив) струм . Струм при цьому визначаємо зі схеми кола (Рис. П6.2, а).

Цю задачу розв’яжемо методом вузлових потенціалів.

Потенціал заземленого вузла , потенціал першого вузла:

.

Визначаються потенціали вузлів 2, 3.

Або:

Звідки: j2= 7.941 (В), j3= 2.206 (В).

Струми у вітках:

; ;

.

Отже: Звідки

За відомими струмами , знайденими у прикладі 3 при визначаємо коефіцієнт В.

.

Залежність струму від опору знаходимо за методом еквівалентного генератора, користуючись відомими струмами у колі на Рис. П6.2, а.

Перевірте! Така ж напруга буде при визначенні іншим шляхом:

Опір еквівалентного генератора визначаємо зі схем (Рис.П6.2, б, в).

.

Тепер маємо:








Дата добавления: 2015-02-13; просмотров: 3065;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.027 сек.