Задачи, решаемые на плоскости функции комплексного переменного.
Функция называется аналитической в некоторой области , если она дифференцируема в этой области, а ее производная непрерывна. Из определения и свойств производных, рассмотренных выше, следует, что необходимым и достаточным условием аналитичности функции является непрерывность частных производных функций и , которые также должны подчиняться условиям Коши-Римана
(4.1)
Из определения следуют свойства аналитических функций, которые часто полезно использовать при решении задач:
если функция является аналитической в области , то она непрерывна в этой области;
если и - аналитические функции в области , то их сумма и произведение также являются аналитическими в области , а функция является аналитической всюду, где ;
если является аналитической в области комплексной плоскости , а в области ее значений определена аналитическая функция , то функция является аналитической функцией в области ;
если является аналитической функцией в области и в окрестности некоторой точки , то в окрестности точки области значений определена обратная функция комплексной переменной , , которая является аналитической и имеет место формула
Пример 1. Найти постоянные , при которых функция будет аналитической, и вычислить производную :
1. ;
2.
Решение. Значения постоянных можно найти из требования выполнения условий Коши-Римана.
1. Так как , , то вычисляя призводные в (4.1), получим
(4.2) |
Таким образом, остается одна произвольная константа (или ) и при условии (2) аналитическая функция запишется в виде:
Производную можно найти, пользуясь формулами:
(4.3)
2. Аналогично, вычисляя частные производные функций и сравнивая результаты, получим
и, так как функции и являются линейно независимыми, то
Подставляя полученные значения постоянных в определение функции и используя формулу Эйлера, имеем
Рассмотренные примеры являются частными случаями общего свойства, согласно которому правила дифференцирования функций действительной переменной являются справедливыми и для аналитических функций.
Пример 2. Показать, что функции, определенные соотношениями:
1) 2)
являются аналитическими на всей комплексной плоскости, и вычислить их производные.
Решение. В примере 1)
2)
показано, что функция является аналитической, тогда на основании свойств аналитических функций (сумма и частное), перечисленных выше, сразу можно получить утверждение задачи, и, пользуясь эквивалентностью правил дифференцирования аналитических функций, получить выражения для производных в следующем виде:
Кроме того, прямым вычислением можно получить следующее тождество для функций и :
Таким образом , подчиняются известным свойствам тригонометрических функций, а для просто совпадают с ними: , . Поэтому естественным будет сохранить и для функций комплексной переменной те же обозначения и, таким образом, расширить определение тригонометрических функций на множество комплексных чисел:
(4.4) |
и также для гиперболических функций:
(4.5) |
Пример 3. Показать, что для аналитических функций имеет место соотношение
(4.6) |
Решение. Вычислим формальную производную на основе определения :
Тогда
Формальное вычисление:
Так как является аналитической функцией, то , что приводит к такому же результату.
Пример 4. Найти производные и .
Решение. Применение формулы (6) для функции с учетом значения производной дает:
Аналогично, используя определения
и учитывая, что - действительная функция, получим
Дата добавления: 2015-02-10; просмотров: 3518;