Пример. Таблица 1 Вид культуры Посевная площадь зерновые 570,6 технические 105,6 картофель 27,9 кормовые 299,0
Таблица 1
Вид культуры | Посевная площадь |
зерновые | 570,6 |
технические | 105,6 |
картофель | 27,9 |
кормовые | 299,0 |
ИТОГО | 1003,1 |
Определяем относительные величины структуры использования посевных площадей колхозами.
Зерновые - 570,6/1003,1*100%=56,9%
Картофель - 27,9/1003,1*100%=2,8% и т.д.
Получаем следующие данные (табл. 2).
Таблица 2
Вид культуры | Посевная площадь в колхозах, % |
Зерновые | 56,9 |
Технические | 10,5 |
картофель | 2,8 |
кормовые | 29,8 |
ИТОГО | 100,0 |
Определяем по данным об удельных весах посевных площадей, занятых под отдельными культурами, соответствующие значения центральных углов.
Зерновые 56,9*3,6 = 204,85
Технические 10,5*3,6 = 37,85
Картофель 2,8*3,6 = 10,15
Кормовые 29,8*3,6 = 107,35
Теперь строим секторную диаграмму, разделив круг на сектора, в соответствии с полученными значениями центральных углов, культуры:
Рис. 7. Структура посевных площадей в колхозах области (1989г.).
При изучении статистической информации о коммерческой деятельности на рынке товаров и услуг применяются так называемые радиальные диаграммы. Строятся они на базе полярных координат. Началом отсчета в них служит центр окружности, а носителем масштабных шкал являются радиусы круга. Обычно в основе радиальных диаграмм лежат повторяющиеся годовые циклы с помесячными или поквартальными данными. Так, при изучении годового цикла с помесячными данными окружность делят радиусами на 12 равных частей. Каждому радиусу дается название месяца года, а их расположение подобно циферблату часов. На каждом радиусе, в соответствии с установленным масштабом, наносятся точки, соответствующие изучаемым за каждый месяц данным. Полученные таким образом точки соединяются между собой линиями . В результате получается спиралеобразная линия, характеризующая внутригодовые циклы коммерческой деятельности.
Знак Варзара. - (Варзар В.Е. - 1851-1940).
Известный русский статистик В. Е. Варзар предложил использовать прямоугольные фигуры для графического изображения трех показателей, один из которых является произведением двух других.
В каждом таком прямоугольнике основание пропорционально одному из показателей — сомножителей, а высота его соответствует второму показателю — сомножителю.
Площадь прямоугольника равна величине третьего показателя, являющегося произведением двух первых. Располагая рядом несколько прямоугольников, относящихся к разным показателям, можно сравнивать не только размеры показателя — произведения, но и значения показателей — сомножителей.
Дата добавления: 2015-02-07; просмотров: 749;