Основная характеристика
Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части:
- азотистое основание - пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.
Строение пуриновых оснований:
Строение пиримидиновых оснований:
- моносахарид - рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу.
Строение моносахаридов:
- остаток фосфорной кислоты. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота.
В конце 40-х — начале 50-х годов, когда появились такие методы исследования, как хроматография на бумаге и УФ-спектроскопия, были проведены многочисленные исследования нуклеотидного состава НК (Чаргафф, А. Н. Белозерский). Полученные данные позволили решительно отбросить старые представления о нуклеиновых кислотах, как о полимерах, содержащих повторяющиеся тетрануклеотидные последовательности (так называемая тетрануклеотидная теория строения ПК, господствовавшая в 30—40-е годы), и подготовили почву для создания современных представлений не только о первичной структуре ДНК и РНК, но и об их макромолекулярной структуре и функциях.
Метод определения состава НК основан на анализе гидролизатов, образующихся при их ферментативном или химическом расщеплении. Обычно используются три способа химического расщепления НК. Кислотный гидролиз в жестких условиях (70%-ная хлорная кислота, 100°С, 1 ч или 100%-ная муравьиная кислота, 175°C, 2 ч), применяемый для анализа как ДНК, так и РНК, приводит к разрыву всех N-гликозидных связей и образованию смеси пуриновых и пиримидиновых оснований. При исследовании РНК могут использоваться как мягкий кислотный гидролиз (1 н соляная кислота, 100°C, 1 ч), в результате которого образуются пуриновые основания и пиримидиновые нуклеозид-2'(3')-фосфаты, так и щелочной гидролиз (0,3 н. едкое кали, 37°С, 20 ч), дающий смесь нуклеозид -2' (3') -фосфатов.
Поскольку в НК число нуклеотидов каждого вида равно числу соответствующих оснований, для установления нуклеотидного состава данной НК достаточно определить количественное соотношение оснований. Для этой цели из гидролизатов с помощью хроматографии на бумаге или электрофореза (когда в результате гидролиза получают нуклеотиды) выделяют индивидуальные соединения. Каждое основание независимо от того, связано оно с углеводным фрагментом или нет, обладает характерным максимумом поглощения в УФ, интенсивность которого зависит от концентрации. По этой причине, исходя из УФ-спектров выделенных соединений, можно определить количественное соотношение оснований, а следовательно, и нуклеотидный состав исходной НК.
При количественном определении минорных нуклеотидов, особенно таких неустойчивых, как дигидроуридиловая кислота, пользуются ферментативными методами гидролиза (ФДЭ змеиного яда и селезенки).
Использование описанных выше аналитических приемов показало, что НК различного происхождения состоят за редким исключением из четырех основных нуклеотидов и что содержание минорных нуклеотидов может меняться в значительных пределах.
Как будет показано далее, при изучении нуклеотидного состава ДНК были получены данные, которые помогли установить ее пространственную структуру.
Нуклеиновые кислоты, полинуклеотиды, важнейшие биологически активные биополимеры, имеющие универсальное распространение в живой природе. Содержатся в каждой клетке всех организмов. НК были открыты в 1868 швейцарским учёным Ф. Мишером в клеточных ядрах (отсюда название: лат. nucleus - ядро), выделенных из гноя, а также из спермы лосося. Позднее нуклеиновые кислоты были обнаружены не только в ядре, но и в цитоплазме. Различают два главных типа нуклеиновых кислот - дезоксирибонуклеиновые кислоты, или ДНК, содержащиеся преимущественно в ядрах клеток, и рибонуклеиновые кислоты, или РНК, находящиеся главным образом в цитоплазме.
Молекулы нуклеиновых кислот - длинные полимерные цепочки с молекулярной массой 2,5 104 – 4 109, построенные из мономерных молекул - нуклеотидов так, что гидроксильные группы у 3' и 5' углеродных атомов углевода соседних нуклеотидов связаны остатком фосфорной кислоты. В состав РНК в качестве углевода входит рибоза, а азотистые компоненты представлены аденином, гуанином (пуриновые основания), урацилом и цитозином (пиримидиновые основания). В ДНК углеводным компонентом является дезоксирибоза, а урацил заменен тимином (5-метилурацилом). Фосфат и сахар составляют неспецифическую часть в молекуле нуклеотида, а пуриновое или пиримидиновое основание - специфическую. В составе большинства нуклеиновых кислот обнаружены в небольших количествах также некоторые другие (главным образом метилированные) производные пуринов и пиримидинов - т. н. минорные основания.
Нуклеиновые кислоты имеют различающийся состав. В частности, дезоксирибонуклеиновые кислоты (ДНК) содержат дезоксирибозу, а рибонуклеиновые кислоты (РНК) - рибозу. Эти и другие отличия в составе нуклеиновых кислот приведены в таблице:
Одинаковые компоненты | Отличающиеся компоненты | |
ДНК | РНК | |
АДЕНИН ГУАНИН ЦИТОЗИН | ДЕЗОКСИРИБОЗА ТИМИН | РИБОЗА УРАЦИЛ |
Цепи нуклеиновых кислот содержат от нескольких десятков до многих тысяч нуклеотидных остатков, расположенных линейно в определённой последовательности, уникальной для данной нуклеиновой кислоты. Т.е., как РНК, так и ДНК представлены огромным множеством индивидуальных соединений. Линейная последовательность нуклеотидов определяет первичную структуру нуклеиновых кислот. Вторичная структура нуклеиновых кислот возникает в результате сближения определённых пар оснований, а именно: гуанина с цитозином и аденина с урацилом (или тимином) по принципу комплементарности за счёт водородных связей, а также гидрофобных взаимодействий между ними.
Биологическая роль нуклеиновых кислот заключается в хранении, реализации и передаче наследственной информации, "записанной" в молекулах нуклеиновых кислот в виде последовательности нуклеотидов - т. н. генетического кода. При делении клеток - митозе - происходит самокопирование ДНК - её репликация, в результате чего каждая дочерняя клетка получает равное количество ДНК, заключающей программу развития всех признаков материнской клетки. Реализация этой генетической информации в определённые признаки осуществляется путём биосинтеза молекул РНК на молекуле ДНК (транскрипция) и последующего биосинтеза белков с участием разных типов РНК (трансляция).
Исследование строения и функций нуклеиновых кислот в 50-70-х гг. 20 в. обусловило огромные успехи молекулярной генетики и молекулярной биологии. Важнейшим этапом в изучении химии и биологии НК было создание в 1953 Дж. Уотсоном и Ф. Криком модели ДНК (двойная спираль), что позволило объяснить многие её свойства и биологические функции. Нуклеиновые кислоты обнаружены также в клеточных органеллах (хлоропластах, митохондриях и др.), где функции их изучаются. Сравнительный анализ нуклеиновых кислот в разных группах организмов играет важную роль при решении вопросов систематики и эволюции. Каждый вид организмов содержит специфичные нуклеиновые кислоты (как РНК, так и ДНК). Степень сходства в строении нуклеиновых кислот указывает на уровень филогенетической близости организмов.
Нуклеозиды - соединения азотистого основания и углеводов (рибозы и дезоксирибозы). Нуклеозиды образуются за счет N-гликозидной связи между девятым атомом азота у пуриновых (первым атомом азота - у пиримидиновых) оснований и гидроксилом первого атома углерода рибозы или дезоксирибозы. Во избежание путаницы, нумерация атомов азотистых оснований осуществляется арабскими цифрами, а у атомов углерода рибоз - арабскими цифрами со “штрихом”.
пуриновые | |
пиримидиновые |
Нуклеотиды отличаются от нуклеозидов наличием остатков фосфорной кислоты (от одного до трех), связанных простой эфирной связью с гидроксилом 5' атома углерода рибоз. Остатки фосфорных кислот между собой также связаны простой эфирной связью. В зависимости от числа остатков фосфорной кислоты в нуклеотидах различают моно-, ди- и трифосфонуклеотиды. Их номенклатура приведена в таблице:
азотистые основания | нуклеозиды | нуклеотиды | |
полное название | Сокращенное | ||
аденин | аденозин | Аденозинмонофосфат | АМФ |
гуанин | гуанозин | Гуанозинмонофосфат | ГМФ |
цитозин | цитидин | Цитидинмонофосфат | ЦМФ |
урацил | уридин | Уридинмонофосфат | УМФ |
тимин | тимидин | тимидинмонофосфат | ТМФ |
Собственно нуклеиновые кислоты представляют собой полинуклеотидмоно-фосфаты. Полимерная цепь образуется за счет фосфодиэфирной связи между 3'- гидроксилом одного нуклеотида и 5'- гидроксилом другого. Таким образом, первичная структура нуклеиновых кислот представляет собой порядок чередования нуклеотидов в полинуклеотидной цепи. Один из концов этой цепи (изображаемый слева) имеет свободный гидроксил при 5' - атоме С, а другой (изображаемый справа) - свободный гидроксил при 3'- атоме углерода рибоз. Поскольку основой нуклеиновых кислот является сахарофосфатный остов, в сокращенных написаниях участков цепи используют лишь однобуквенные символы, соответствующего азотистого основания. Полное и схематичное обозначения участка полинуклеотидной цепи приведены ниже:
5'-НО-G-A-A-T-C-T-A-C-A-…3'
Вследствие наличия сильно диссоциирующих фосфатных групп, нуклеиновые кислоты легко образуют связи с основными белками с образованием нуклеопротеинов. Протеины отделяются от НК детергентами или после расщепления белков протеиназами НК осаждаются спиртом.
Подобно белкам, ДНК имеют первичную, вторичную и третичную структуру.
Дата добавления: 2015-02-07; просмотров: 1833;