Тема 4. Технологии изготовления материалов электронной техники
Необходимым условием достижения высоких электрофизических характеристик полупроводниковых материалов является их глубокая очистка от посторонних примесей. В случае Ge и Si эта проблема решается путем синтеза их летучих соединений (хлоридов, гидридов) и последующей глубокой очистки этих соединений с применением методов ректификации, сорбции, частичного гидролиза и специальных термических обработок. Затем хлориды особой чистоты подвергают высокотемпературному восстановлению водородом, прошедшим предварительную глубокую очистку, с осаждением восстановленных продуктов на кремниевых или германиевых прутках. Из очищенных гидридов Ge и Si выделяют путем термического разложения. В результате получают Ge и Si с суммарным содержанием остаточных электрически активных примесей на уровне 10-7-10-9%. Получение особо чистых полупроводниковых соединений осуществляют синтезом из элементов, прошедших глубокую очистку. Суммарное содержание остаточных примесей в исходных материалах не превышает обычно 10-4-10-5%. Синтез разлагающихся соединений проводят либо в запаянных кварцевых ампулах при контролируемом давлении паров летучего компонента в рабочем объеме, либо под слоем жидкого флюса (например, особо чистого обезвоженного В2О3). Синтез соединений, имеющих большое давление паров летучего компонента над расплавом, осуществляют в камерах высокого давления. Часто процесс синтеза совмещают с последующей дополнительной очисткой соединений путем направленной или зонной кристаллизации расплава.
Наиболее распространенный способ получения монокристаллов полупроводниковых материалов - вытягивание из расплава по методу Чохральского (выращивание монокристаллов). Этим методом получают монокристаллы Ge, Si, соединения типа AIIIBV, AIIBVI, AIVBVI и т.д. Вытягивание монокристаллов неразлагающихся полупроводниковых материалов проводят в атмосфере Н2, инертных газов или в условиях глубокого вакуума. При выращивании монокристаллов разлагающихся соединений (InAs, GaAs, InP, GaP, CdTe, PbTe и др.) расплав герметизируют слоем жидкого флюса (В2О3) и вытягивают монокристаллы, погружая затравку в расплав через флюс и поддерживая в рабочем объеме над расплавом определенное давление инертного газа. Часто процесс вытягивания осуществляют в камерах высокого давления, совмещая процесс выращивания монокристаллов с предварительным синтезом соединений под слоем флюса (GaAs, InP, GaP и др.).
Для выращивания монокристаллов полупроводниковых материалов также широко используют методы направленной и зонной кристаллизации расплава в контейнере. В случае разлагающихся соединений для получения монокристаллов требуемого стехиометрического состава процесс проводят в запаянных кварцевых ампулах, поддерживая равновесное давление паров летучего компонента над расплавом; часто для этого требуются камеры высокого давления, в которых поддерживается противодавление инертного газа. При получении монокристаллов необходимой кристаллографической ориентации используют ориентированные соответствующим образом монокристаллические затравки.
Для выращивания монокристаллов полупроводниковых материалов, обладающих подходящим сочетанием плотности и поверхностного натяжения расплава, используют метод бестигельной зонной плавки. Наибольшее распространение этот метод получил в технологии получения монокристаллов Si, имеющего сравнительно невысокую плотность и достаточно большое поверхностное натяжение расплава. Отсутствие контакта расплава со стенками контейнера позволяет получать этим методом наиболее чистые монокристаллы. Обычно процесс выращивания монокристалла совмещают с предварительной дополнительной очисткой полупроводниковых материалов зонной плавкой.
Для получения монокристаллов ряда тугоплавких разлагающихся полупроводниковых соединений (например, CdS, ZnS, SiC, AlN и др.) используют кристаллизацию из газовой фазы (методы сублимации и химических транспортных реакций). В случае если при выращивании монокристаллов не удается получить соединение требуемого стехиометрического состава, кристаллы разрезают на пластины, которые подвергают дополнительному отжигу в парах недостающего компонента. Наиболее часто этот прием используют в технологии получения монокристаллов узкозонных соединений типа AIIBVI и AIVBVI, где собственные точечные дефекты сильно влияют на концентрацию и подвижность носителей тока, т.е. проявляют высокую электрическую активность (PbTe, PbxSn1-xTe, CdxHg1-xTe и др.). При этом удается снизить концентрацию носителей заряда в кристаллах на несколько порядков. Для выращивания профилированных монокристалов полупроводниковые материалы (ленты, прутки, трубы и т.д.) используют метод Степанова.
Широко распространено получение полупроводниковые материалы в виде монокристаллических пленок на разного рода монокристаллических подложках. Такие пленки называют эпитаксиальными, а процессы их получения - эпитаксиальным наращиванием. Если эпитаксиальная пленка наращивается на подложку того же вещества, то получаемые структуры называют гомоэпитаксиальными; при наращивании на подложку из другого материала - гетероэпитаксиальными. Возможности получения тонких и сверхтонких однослойных и многослойных структур разнообразной геометрии с широкой вариацией состава и электрофизических свойств по толщине и поверхности наращиваемого слоя, с резкими границами р-n-переходов и гетеропереходов обусловливают широкое использование методов эпитаксиального наращивания в микроэлектронике и интегральной оптике, в практике создания больших и быстродействующих интегральных схем, а также оптоэлектронных приборов.
Для получения эпитаксиальных структур полупроводниковых материалов используют методы жидкостной, газофазной и молекулярно-пучковой эпитаксии. Методом жидкостной эпитаксии получают гомо- и гетероэпитаксиальные структуры на основе соединений типа AIIIBV, AIIBVI, AIVBVI и их твердых расплавов. В качестве растворителя обычно используют расплав нелетучего компонента соответствующего соединения. Наращивание эпитаксиального слоя проводят либо в режиме программируемого снижения температуры, либо из предварительно переохлажденного расплава. Этим методом можно воспроизводимо получать многослойные структуры с толщинами отдельных слоев до ~ 0,1 мкм при толщинах переходных слоев на гетерограницах порядка десятков нм.
Легирование.Для получения полупроводниковых материалов электронного типа проводимости (n-типа) с изменяющейся в широких пределах концентрацией носителей заряда (электронов) обычно используют донорные примеси, образующие "мелкие" энергетические уровни в запрещенной зоне вблизи дна зоны проводимости (энергия ионизации ≤ 0,05 эВ). Для полупроводниковых материалов дырочного типа проводимости (р-типа) аналогичная задача решается путем введения акцепторных примесей, образующих "мелкие" энергетические уровни в запрещенной зоне вблизи потолка валентной зоны. Такие примеси при комнатной температуре практически полностью ионизованы, так что их концентрация приблизительно равна концентрации носителей заряда, которая связана с подвижностями носителей соотношениями: sn = emnn для полупроводниковых материалов n-типа и sр = empp для полупроводниковых материалов р-типа (sn и sр - проводимость; mn и mр - подвижности электронов и дырок соответственно). Для Ge и Si основными донорными легирующими примесями являются элементы V гр. периодической системы: Р, As, Sb, a акцепторными - элементы III гр.: В, Al, Ga. Для соединений типа AIIIBV - соотв. примеси элементов VI гр. (S, Se, Те), а также Sn, и элементов II гр. (Be, Mg, Zn, Cd). Элементы IV гр. (Si, Ge) в зависимости от условий получения кристаллов и эпитаксиальных слоев соед. типа AIIIBV могут проявлять как донорные, так и акцепторные свойства. В соед. типа AIIBVI и AIVBVI поведение вводимых примесей сильно осложняется присутствием собственных точечных структурных дефектов. Необходимые тип и величина проводимости в них обычно достигаются прецизионным регулированием отклонения состава от стехиометрического, обеспечивающего заданную концентрацию определенного типа собств. точечных дефектов структуры в криcталлах.
Перечисленные выше легирующие примеси образуют, как правило, твердые р-ры замещения и обладают достаточно высокой растворимостью (1018-1020 атомов/см3) в широком интервале температур. Растворимость их носит ретроградный характер, при этом максимум растворимости приходится на температурный интервал 700-900°С в Ge, 1200-1350°C в Si и 1100-1200°С в GaAs. Эти примеси являются малоэффективными центрами рекомбинации носителей и сравнительно слабо влияют на величину их времени жизни.
Примеси тяжелых и благородных металлов (Fe, Ni, Cr, W, Cu, Ag, Аи и др.) в большинстве полупроводниковые материалы образуют глубокие, часто многозарядные донорные или акцепторные уровни в запрещенной зоне, имеют большие сечения захвата носителей заряда и являются эффективными центрами рекомбинации носителей, приводя к значительному снижению их времени жизни. Эти примеси обладают малой и обычно ярко выраженной ретроградной растворимостью в полупроводниковые материалы и имеют очень малые значения коэффициент распределения между кристаллом и расплавом. Легирование ими производят в тех случаях, когда надо получить полупроводниковые материалы с малым временем жизни носителей или с высоким удельным электрическим сопротивлением, достигаемым компенсацией мелких энергетических уровней противоположной природы. Последнее часто используют для получения полуизолирующих кристаллов широкозонных полупроводниковые материалы типа AIIIBV (GaAs, GaP, InP); легирующими примесями служат Cr, Fe, Ni. Основные характеристики наиболее распространенных примесей в важнейших полупроводниковых материалах представлены в табл. 1.
Легирование полупроводниковые материалы обычно осуществляют непосредственно в процессах получения монокристаллов и эпитаксиальных структур. Примесь вводится в расплав либо в виде элемента, либо в виде сплава с данным полупроводниковым материалом (лигатуры). Часто легирование осуществляют из газовой фазы (паров) данного элемента или его легколетучих соединений. Это - основной способ легирования в процессах эпитаксии при кристаллизации из газовой фазы. При молекулярно-пучковой эпитаксии источником легирующей добавки обычно является сама элементарная примесь. Расчет необходимого содержания легирующей примеси требует знания точной количеств, связи между ее концентрацией и заданными свойствами полупроводниковых материалов, а также основных физико-химических характеристик примеси: коэффициент распределения между газовой фазой и кристаллом (К), упругости паров и скорости испарения в широком интервале температур, растворимости в твердой фазе и т.п.
Одна из главных задач легирования - обеспечение равномерного распределения вводимой примеси в объеме кристалла и по толщине эпитаксиального слоя. При направленной кристаллизации из расплава равномерное распределение примеси по длине слитка достигается либо путем поддержания ее постоянной концентрации в расплаве за счет его подпитки из твердой, жидкой или газовой фазы, либо путем программированного изменения эффективного коэффициент распределения примеси при соответствующем изменении параметров процесса роста. При зонной перекристаллизации для примесей с К << 1 обычно используют целевую загрузку примеси в начальную расплавленную зону с последующим ее проходом через всю заготовку. Эффективный способ повышения объемной однородности монокристаллов - воздействие на массоперенос в расплаве наложением магнитного поля. Однородного распределения примеси по толщине слоя в процессе жидкофазной эпитаксии достигают кристаллизацией при постоянной температуре в условиях подпитки расплава, а при газофазной эпитаксии - поддержанием постоянной концентрации легирующей примеси в газовой фазе над подложкой на протяжении всего процесса наращивания.
Легирование полупроводниковых материалов может быть осуществлено также путем радиационного воздействия на кристалл, когда в результате ядерных реакций с участием собственных атомов вещества образуются электрически активные примеси. Наибольший интерес для радиационного легирования представляет воздействие тепловыми нейтронами, которые обладают большой проникающей способностью, что обеспечивает повышенную однородность легирования. Концентрация примесей, образующихся в результате нейтронного облучения, определяется соотношением: Nпр = N0siCiсрt, где N0 - кол-во атомов в единице объема полупроводникового материала; si - сечение поглощения тепловых нейтронов; Ci - содержание (%) соответствующего нуклида в естественной смеси; ср - плотность потока тепловых нейтронов; t - время облучения. Легирование облучением тепловыми нейтронами обеспечивает строго контролируемое введение заданных концентраций примеси и равномерное ее распределение в объеме кристалла. Однако в процессе облучения в кристалле образуются радиационные дефекты, для устранения которых необходим последующий высокотемпературный отжиг. Кроме того, может появиться наведенная радиоактивность, требующая выдержки образцов после облучения. Легирование облучением тепловыми нейтронами обычно используют для получения однородно легированных фосфором монокристаллов Si с высоким удельным электрическим сопротивлением.
При создании структур с p-n-переходами для полупроводниковых приборов широко используют легирование путем диффузионного введения примеси. Профиль концентрации примеси при диффузии описывается обычно функцией ошибок и имеет вид плавной кривой, характер которой определяется следующими факторами: температурой и временем проведения процесса; толщиной слоя, из которого осуществляется диффузия; концентрацией и формой нахождения примеси в источнике, а также ее электрическим зарядом и возможностью взаимодействия с сопутствующими примесями и дефектами в полупроводниковом материале. Из-за малых значений коэффициента диффузии основных легирующих примесей диффузионное легирование обычно проводят при высоких температурах (для Si, например, при 1100-1350 °С) и в течение длительного времени; при этом оно, как правило, сопровождается генерированием в кристалле значительного количества структурных дефектов, в частности дислокаций. При диффузионном легировании возникают трудности в получении тонких легированных слоев и достаточно резких p-n переходов.
Для получения тонких легированных слоев перспективны процессы ионного легирования (ионной имплантации), при которых введение примесных атомов в приповерхностный слой материала осуществляется путем бомбардировки соответствующими ионами с энергией от нескольких кэВ до нескольких МэВ. Возможность введения практически любой примеси в любой полупроводниковый материал, низкие рабочие температуры процесса, гибкое управление концентрацией и профилем распределения вводимой примеси, возможность легирования через диэлектрические покрытия с получением тонких, сильно легированных слоев обеспечили широкое распространение этого метода в технологии полупроводниковых приборов. Однако в процессе ионного легирования генерируются собственные точечные дефекты структуры, возникают области разупорядочения решетки, а при больших дозах - аморфизованные слои. Поэтому для получения качественных легированных слоев необходим последующий отжиг введенных дефектов. Отжиг проводят при температурах существенно более низких, чем при диффузии (для Si, например, не выше 700-800 °С). После отжига свойства имплантированных слоев близки к свойствам материала, легированного до тех же концентраций традиционными методами.
Дата добавления: 2015-02-07; просмотров: 1222;