Основы ТЕОРИИ ИЗМЕРЕНИЙ
2.1. ОСНОВНОЙ ПОСТУЛАТ МЕТРОЛОГИИ
Любое измерение по шкале отношений предполагает сравнение неизвестного размера с известным и выражение первого через второй в кратном или дольном отношении. При измерении физических величин в качестве известного размера естественно выбрать единицу СИ. Тогда процедура сравнения неизвестного значения с известным и выражения первого через второе в кратном или дольном отношении запишется следующим образом: . В квалиметрии сравнение производится обычно со значением базового показателя качества или с представлением о наивысшем качестве, которое оценивается максимальным количеством баллов.
На практике непосредственно неизвестный размер не всегда может быть представлен для сравнения с единицей. Жидкости, например, и сыпучие вещества представляются на взвешивание в таре. Очень маленькие линейные размеры могут быть измерены только после увеличения их микроскопом или другим прибором. В первом случае процедура сравнения выглядит как определение отношения во втором -
, где в рассматриваемых примерах u - масса тары, а c- коэффициент увеличения. Само сравнение в свою очередь происходит под влиянием множества случайных и неслучайных, аддитивных (от латинского additives - прибавляемых) и мультипликативных (от латинского multiplico- умножаю) факторов, точный учет которых нeвoзмoжeн, а результат совместного воздействия непредсказуем. Ограничиваясь для простоты аддитивными воздействиями, совместное влияние которых можно учесть случайным слагаемым ŋ получим следующее уравнение измерения по шкале отношений:
Оно выражает некоторое действие, процедуру сравнения в реальных условиях, которая, собственно, и является измерением. Главной особенностью измерительной процедуры является то, что при ее повторении из-за случайного характера η отсчет по шкале отношений х получается все время разным. Это фундаментальное положение является законом природы. На основании громадного опыта практических измерений, накопленного к настоящему времени, может быть сформулировано следующее утверждение, называемое основным постулатом метрологии:отсчет является случайнымчислом. На этом постулате, который легко поддается проверке и остается справедливым в любых областях и видах измерений, основана вся метрология.
Уравнение (2) является математической моделью измерения по шкале отношений. Отсчет в ней не может быть представлен одним числом. Его можно лишь описать словами или математическими символами, представить массивом экспериментальных данных, таблично, графически, аналитическим выражением и т.п. Проиллюстрируем это двумя примерами.
Пример 3. При п — кратном независимом измерении одной и той же физической величины постоянного размера на световом табло цифрового измерительного прибора в случайном порядке появлялись числа хi, представленные в первой графе табл. 5. Каждое i-е число появилось m, раз. Что представляет собой отсчет при таком измерении?
Решение. Ни одно из чисел в первой графе таблицы, взятое в отдельности, не является отсчетом. Отсчет характеризуется всей совокупностью этих чисел с учетом того, как часто они появлялись. Принимая частость каждого i-го числа за вероятность его появления Р(хi), заполним третью графу в табл. 5. В совокупности с первой она даст янм распределение вероятности отсчета, представленное таблично. Его же можно представить графически так, как это показано на рис. 4. А можно поступить и по другому. Проставим в четвертой графе табл. 5 вероятности того, что на табло показывающего измерительного прибора появится число, меньшее или равное тому, которое значится в первой графе. В совокупности с первой графой это даст нам представленную таблично функцию распределения вероятности отсчета. Графически она выглядит так, как это показано на рис. 5.
Таблица 5
xi | m, | Р (хi) | F (хi) |
90,10 | ![]() | 0,01 | |
90,11 | ![]() | 0,01 +0,02 = 0,03 | |
90,12 | ![]() | 0,03 + 0,05 = 0,08 | |
90,13 | ![]() | 0,08 + 0,1 = 0,18 | |
90,14 | ![]() | 0,18+0,2 = 0,38 | |
90,15 | ![]() | 0,38 + 0,24 = 0,62 | |
90,16 | ![]() | 0,62+0,19 = 0,81 | |
90,17 | ![]() | 0,81 + 0,11 = 0,92 | |
90,18 | ![]() | 0,92 + 0,05 = 0,97 | |
90,19 | ![]() | 0,97 + 0,02 = 0,99 | |
90,20 | ![]() | 0,99 + 0,01 = 1,00 |
Как распределение вероятности Р(хi), так и функция распределения вероятности F (хi)являются исчерпывающим описанием отсчета у цифровых измерительных приборов любой конструкции.
Пример 4. При n-кратном независимом измерении одной и той же физической величины постоянного размера аналоговым измерительным прибором указатель отсчетного устройства в случайной последовательности по m раз останавливался на каждом из делений шкалы:
Деление шкалы | m |
0,10… 0,11 | |
0,11 … 0,12 | |
0,12… 0,13 | |
0,13… 0,14 | |
0,14 … 0,15 | |
0,15 … 0,16 | |
0,16 . . . 0,17 | |
0,17 . . . 0,18 | |
0,18 . . . 0,19 | |
0,19 . . . 0,20 |
Что представляетсобой отсчет при таком измерении?
![]() |
Решение. Принимая деления шкалы за основания, построим на них m прямоугольники с высотами, равными отношению частостей

Как гистограмма, так и полигон являются исчерпывающим эмпирическим описанием отсчета у аналоговых измерительных приборов любой конструкции.
Если бы была возможность увеличивать п, то в пределе при п ® ∞ и Dx®0 полигон перешел бы в кривую плотности распределения вероятности отсчета р (хi), показанную на рис. 6, б.
![]() |
Здесь так же, как в примере 3, можно поступить по-другому. Подсчитывая, сколько раз указатель отсчетного устройства останавливался левее каждой отметки шкалы, откладывая над этой отметкой вдоль оси ординат отношение числа таких отклонений к их общему числу n и соединяя полученные точки отрезками прямых, мы получим ломаную линию, показанную на рис. 7,а и называемую кумулятивной кривой. Как гистограмма и полигон, она исчерпывающе характеризует отсчет у аналоговых измерительных приборов. Если бы опять-таки была возможность увеличивать п, то при п ® ∞ и Dx®0 кумулятивная кривая перешла бы в график функции распределения вероятности отсчета .F(xi), показанный на рис. 7, б.
Плотность распределения вероятности р(х) и функция распределения вероятности F (х) служат в теории вероятности моделями эмпирических законов распределения, получаемых из экспериментальных данных методами математической статистики.
После выполнения измерительной процедуры в уравнении (2) остаются два неизвестных; Q и h. Неслучайное значение ύ либо должно быть известно до измерения, либо устанавливается посредством дополнительных исследований. Слагаемое h, являющееся случайным, не может быть известно в принципе. Поэтому определить значение измеряемой величины
Q =х [Q] -h [Q] - ύ (3)
Дата добавления: 2015-02-05; просмотров: 1135;