Лекция 10 Явления переноса. Реальные газы.

1. Общая характеристика явлений переноса. Среднее число столкновений и средняя длина свободного пробега. Время релаксации. Молекулярно-кинетическая теория явлений переноса: теплопроводности, вязкого трения, диффузии. Коэффициенты переноса.

2. Эффективный диаметр молекул. Силы межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.

Тезисы

1. Все явления переноса возникают в газах в результате нарушения полной хаотичности движения молекул. Эти нарушения вызваны направленным воздействием на газ, приводящим в случае диффузии к неоднородной плотности, в случае теплопроводности – к разной температуре в различных слоях объема газа. Внутреннее трение связано с тем, что создается упорядоченное движение различных слоев газа с различными скоростями. Нарушение полной хаотичности движения молекул в явлениях переноса сопровождается отклонением от максвелловского закона распределения молекул по скоростям. Именно отклонениями от этого закона объясняется направленный перенос массы, импульса и внутренней энергии в газах.

Теплопроводность Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось Х была ориентирована в направлении переноса. Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит выравнивание средних кинетических энергий молекул, т.е. выравнивание температур. Закон Фурье Коэффициент теплопроводности , где jE - плотность теплового потока – величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси Х, К – теплопроводность (коэффициент теплопроводности), dT/dx - градиент температуры, равный скорости изменения температура на единицу длины Х в направлении нормали к этой площадке. Знак «минус» в формуле показывает, что при теплопроводности энергия переносится в направлении убывания температуры. Теплопроводность К численно равна плотности теплового потока при градиенте температуры, равном единице.

Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся тел; диффузия сводится к обмену масс этих частиц, возникает и продолжается, пока существует градиент плотности. Во время становления МКТ по вопросу диффузии возникали противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространится очень медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.

Закон Фика Коэффициент диффузии , где jm – плотность потока массы – величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси Х, D - диффузия (коэффициент диффузии), dρ / dx - градиент плотности, равный скорости изменения плотности на единицу длины Х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности. Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице.

Механизм возникновения внутреннего трения между параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее – увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорение слоя, движущегося медленнее.

Сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона: Динамическая вязкость , где jp – плотность потока импульса – величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси Х через единичную площадку, перпендикулярную оси Х, dv / dx - градиент скорости. Знак минус показывает, что импульс переносится в направлении убывания скорости. Динамическая вязкость численно равна плотности потока импульса при градиенте скорости, равном единице.

Между коэффициентами переноса существуют зависимости: и

2. Ван-дер-Ваальс первый сумел создать новую модель реального газа:

1) между молекулами действуют силы притяжения, которые по своей природе являются электрическими. Каждая молекула - шар диаметра d. Поэтому величину объема, входящего в уравнение Менделеева - Клапейрона, надо заменить на новую величину (V-b), где b рассматривается как некоторая поправка на истинный объем, доступный молекулам газа; 2) молекулы взаимодействуют не только друг с другом, но и с окружающими их стенками сосуда. Если силы взаимодействия между молекулами вдали от стенки в среднем компенсируют друг друга, то вблизи стенки на молекулу действует некоторая равнодействующая сила, направленная от стенки и стремящаяся уменьшить кинетическую энергию молекулы при ее ударе об стенку.

Уравнение Ван-дер-Ваальса (для 1 моль реального газа) , где а и в – постоянные для каждого газа величины, определяемые опытным путем. Для произвольного количества вещества)

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ва­альса- кривые зависимости р от Vm при заданных Т, определяемые уравнением Ван-дер-Ваальса для моля газа. Эти кривые (рассматриваются для четы­рех различных температур) имеют довольно своеобразный характер. При вы­соких температурах (T>Tк) изотерма ре­ального газа отличается от изотермы иде­ального газа только некоторым искажени­ем ее формы, оставаясь монотонно спада­ющей кривой. При некоторой температуре Тк на изотерме имеется лишь одна точка перегиба К. Эта изотерма называется кри­тической, соответствующая ей температу­ра Tк — критической температурой. Кри­тическая изотерма имеет лишь одну точку перегиба К, называемую критической точ­кой; в этой точке касательная к ней па­раллельна оси абсцисс. Соответствующие этой точке объем Vк и давление рк на­зываются также критическими. Состояние с критическими параметрами (рк, Vк, Тк) называется критическим состоянием. При низких температурах (Т<Тк) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

 

 

Кривая, соответствующая уравнению Ван-Дер-Ваальса, пересекает горизонтальную прямую - изобару - в трех точках. Однако сразу становится ясным, что не все участки теоретической кривой могут быть реализованы. В частности, на участке 3-5 увеличение объема сопровождается увеличением давления, что противоречит здравому смыслу. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.

Участок 2—6 соответствую­щий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображае­мые участками ван-дер-ваальсовой изо­термы 5—6 и 2—3. Эти неустойчивые со­стояния называются метастабильными. Участок 2—3 изображает перегретую жидкость, 5—6 — пересыщенный пар. Обе фазы ограниченно устойчивы. При достаточно низких температурах изотерма пересекает ось Vm, переходя в область отрицательных давлений. Вещество под отрицательным давлением находится в со­стоянии растяжения. При некоторых усло­виях такие состояния также реализуются.

 

 

Уравнение Клайперона – Клаузиуса: производная от равновесного давления по температуре , где L – теплота фазового перехода, T - температура перехода (процесс изотермический). Уравнение позволяет определить наклоны кривых равновесия.








Дата добавления: 2015-01-29; просмотров: 3457;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.