Преобразование координат

Сначала рассмотрим общие вопросы преобразования координат. Пусть задана п-мерная система координат в базисе (k1, k2,.... kn), которая описывает положение точки в пространстве с помощью числовых значений кi. В КГ наиболее часто используются двумерная (n = 2) и трехмерная (n = 3) системы координат.

Если задать другую, N-мерную, систему координат в базисе (m1, m2,..., т) и поставить задачу определения координат в новой системе, зная координаты в старой, то решение (если оно существует) можно записать в таком виде:

где fi — функция пересчета i-й координаты, аргументами являются координаты в системе ki,. Можно поставить и обратную задачу: по известным координатам (m1, m2,.... т) определить координаты (к1, k2,..., кn ). Решение обратной задачи запишем так:

где Fi — функции обратного преобразования.

В случае если размерности систем координат не совпадают (п ≠ N), осуществить однозначное преобразование координат чаще всего не удается. Например, по двумерным экранным координатам нельзя без дополнительных условий однозначно определить трехмерные координаты отображаемых объектов.

Линейные преобразования наглядно записываются в матричной форме:

Здесь матрица коэффициентов (аij) умножается на матрицу-столбец (ki), и в результате будем иметь матрицу-столбец (mi ).

Мы и дальше часто будем использовать умножение матриц, поэтому сделаем небольшой экскурс в матричную алгебру. Для двух матриц —

матрицы А размерами (т х п) и В (n x p):

матричным произведением является матрица С = АВ размерами (m х р):

С = для которой элементы cij рассчитываются по формуле

 








Дата добавления: 2015-01-29; просмотров: 822;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.