Данные о продаже продуктов на городском рынке за месяц

 

    Цена тыс. руб./кг Продано, т Выручка, млн ру6.
май июнь май июнь май июнь условная условная
p0 p1 q0 q1 w0 = q0 p0 w1 = q1p1 q1p0 q0 p1
Говядина 15,05 15,95 3,0 2,98 45,15 47,53 44,85 47,85
Свинина 16,30 17,54 2,8 2,75 45,64 48,24 44,82 49,11
Масло животное 13,75 14,19 1,5 1,45 20,62 20,58 19,94 21,28
Масло растительное 5,56 5,77 1,0 0,90 5,56 5,19 5,00 5,77
Картофель 1,02 1,13 10,2 10,80 10,40 12,20 11,02 11,53
Капуста 4,12 4,08 8,5 8,8 35,02 35,90 36,26 34,68
Яблоки 9,24 9,26 5,7 4,9 52,67 45,37 45,28 52,78
Итого - - - - 215,06 215,01 207,17 223,00
                   

 

В обоих вариантах получены показатели снижения объема продажи и роста цен, но в первом случае объем продажи снизился на 3,58%, цены повысились на 3,7%, а во втором - снижение объема продажи на 3,7% и рост цен на 3,78%. Следуя статистической логике, можно сказать, что точечные оценки в принципе невозможны; можно говорить лишь о поле или интервале оценок: для объема продажи - снижение от -3,58% до - 3,7%; для цен - рост от 3,7% до 3,78%.

Однако в практическом использовании индексов стремятся получить однозначное решение тем или иным способом. Первый путь - получение средних оценок изменений: либо в форме индексов, построенных на средних весах:

 

 

либо через осреднение разновзвешенных индексов. При этом предпочтение отдается средней геометрической:

 

(10.14)

 

Второй путь основан на предпочтении какого-то одного варианта построения взаимосвязанных индексов. Как уже отмечалось, в отечественной статистике был принят второй вариант. Но при этом возникала несопоставимость оценок изменений признаков. Поэтому делалась попытка построения всех взаимосвязанных индексов на весах одного периода - базисного:

 

(10.15)

 

Понятно, что в этом случае не выполняется увязка индексов в систему:

 

 

Изолированная оценка изменения каждого фактора при неизменности другого приводит к недоучету эффекта совместного изменения факторов. Скажем, вы смотрите движущееся изображение без звука или слушаете звуковое сопровождение без изображения, и в том, и в другом случае воздействие меньше, чем при соединении изображения и звука. Наглядно это можно показать с помощью особого вида плоскостной диаграммы, известной в отечественной статистике как «знак Варзара» (по имени русского статистика В. Е. Варзара (1851-1940) (см. рис. 10.1).

Результативное явление представлено здесь в виде прямоугольника, площадь которого в базисном периоде , в отчетном - . Переход от базисного состояния к отчетному формируется за счет изменения фактора , изменения фактора и совместного изменения обоих факторов :

 

(10/16)

 

В статистической науке выработано множество версий такого разложения: 1) выделение эффекта взаимодействия факторов в самостоятельный член; 2) присоединение его к какому-либо одному фактору (т. е. построение какого-либо из индексов на весах отчетного периода); 3) разделение эффекта взаимодействия факторов и присоединение к изменениям факторов - поровну, либо пропорционально значениям индексов факторов, либо еще по какому-то принципу. Вы можете тоже попытаться предложить свое решение - актуальность проблемы сохраняется.

В. И. Борткевич (1868-1931) вывел формулу, объясняющую различие между индексами с разными весами:

 

Точно так же можно выразить соотношение между индексами фактора q с разными весами. Из формулы (10.17) ясно, что индексы с отчетными и базисными весами будут равны, если выполняется хотя бы одно из условий: или корреляция между изменениями цен и объема продажи на отдельные товары отсутствует, = 0; или темпы изменения объемов товаров всех видов будут oдинаковы, = 0; или темпы изменений цен на все товары будут одинаковы, = 0. Чем большая дистанция разделяет сравнимые периоды, тем сильнее проявляются все отмеченные факторы различий между индексами с разными весами.

Ничего не меняется, если результативный признак включает более двух факторов, т. е. в случае мультипликативной модели:

y = x1 ·x2…..xk

 

Если придерживаться концепции неравноправия факторов и строить индексы с разными весами, то все зависит от принятой последовательности факторов в системе. Например, общие затраты на кожу для изготовления женских туфель можно представить как w = qlp, где q - количество пар туфель; l - средний расход кожи на одну пару; р - цена кожи. Первым стоит фактор q как первичный, с которого и начинаются все изменения. Тогда индексы будут иметь вид:

(10.18)

 

Здесь используется то же правило выбора весов, которое было сформулировано выше. Признаки, стоящие слева от индексируемого признака, трактуются по отношению к нему как первичные и закрепляются на отчетном уровне (они «уже» изменились), стоящие справа от него трактуются как вторичные и закрепляются на базисном уровне (они как бы «еще» не изменились). К этому добавляется условие содержательной интерпретации при последовательном объединении признаков слева направо. Скажем, произведение ql имеет экономический смысл — это расход кожи на весь объем производства туфель, при перестановке признаков q, р, l произведение qp экономического смысла не имеет. На таком подходе основан метод цепных подстановок, широко используемый в экономическом анализе. \

Если же все индексы строятся на весах одного и того же (базисного) периода, то последовательность признаков не имеет значения. Система индексов будет иметь вид:

 

(10/19)

 

 

И в этом случае многофакторной модели эффект совместных изменений можно либо сохранить как самостоятельный член разложения, либо распределить между изменениями факторов. Это зависит от поставленной задачи и от пристрастий исследователя.

Сравнение данных отчетного и базисного периодов неявно предполагает представление экономических процессов в виде дискретной последовательности периодов времени, что особенно проблематично при сравнении в длительном периоде. Экономические индексы для моментов непрерывного времени были предложены в 1928 г. французским статистиком Ф. Девизиа. Это привело к использованию в индексном анализе дифференциального исчисления. Данный подход до сих пор не вошёл в статистическую практику, однако теоретически он более обоснован, нежели традиционные методы.








Дата добавления: 2015-01-21; просмотров: 1144;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.