Основы дисперсионного анализа
Может быть поставлена задача сравнения двух выборочных дисперсий. Для ее решения применяется критерий, названный в честь английского статистика Рональда Фишера (1890 - 1968) F- критерием. Этот критерий представляет собой отношение выборочных дисперсий s21 и s22, которые рассматриваются как оценки одной и той же генеральной дисперсии s2:
.
Испытуемая гипотеза является нулевой гипотезой Н0 : s21 = s22 = s2, альтернативная гипотеза Н1 : s21 ≠ s22 ≠ s2 .
F-критерий строится так, что в числителе стоит бо́льшая дисперсия. Fmin = 1, Fmax ® ¥ . Критические значения критерия F берутся из таблиц F-распределения. F-распределение зависит от уровня значимости и от числа степеней свободы сравниваемых дисперсий d.f.1и d.f.2(cм. приложение, табл. 3).
В дисперсионном анализе общая вариация подразделяется на составляющие и производится сравнение этих составляющих. Испытуемая гипотеза состоит в том, что если данные каждой группы представляют случайную выборку из нормально распределенной генеральной совокупности, то величины всех частных дисперсий должны быть пропорциональны своим степеням свободы и каждую из них можно рассматривать как оценку генеральной дисперсии.
Дисперсионный анализ часто применяется совместно с аналитической группировкой (см. гл. 6). В этом случае данные подразделяются на группы по значениям признака-фактора, вычисляются значения средних величин результативного признака в группах, считается, что различия вих значениях определяются различиями в значениях фактора. Задача состоит в оценке существенности различий между средними значениями результативного признака в группах. Итак, испытуемая гипотеза может быть записана как гипотеза о средних величинах Н0 : m1 = m2 =m3 =… Как было показано в предыдущем параграфе, когда выделяются две группы, эта задача решается с помощью t-критерия. Если же число сравниваемых групп больше двух, то существенность различий между группами доказывается с помощью дисперсионного анализа, на основе F-критерия. Заметим, что результаты дисперсионного анализа, так же как и выводы о характере связи, значения показателей ее силы и тесноты, зависят от числа групп, выделенных по признаку-фактору.
В случае выделения групп по одному фактору мы имеем так называемый однофакторный дисперсионный комплекс. Разложение дисперсии при этом производится в соответствии с правилом сложения дисперсий (см. гл. б):
,
где уij - значение результативного признака у i-й единицы в j-й группе;
i - номер единицы, i = 1, .... п.;
j - номер группы;
пj- численность у-й группы;
yj - средняя величина результативного признака в у-й группе;
у̅ — общая средняя результативного признака.
Если обозначить суммы квадратов отклонений буквой D, получим равенство:
Dобщ = Dфакт +Dост (7.41)
На основе разложения дисперсии (7.41) в соответствии с гипотезой отсутствия различий между группами могут быть получены три оценки генеральной дисперсии, пропорциональные степени свободы: на основе общей вариации, межгрупповой (факторной) и внутригрупповой (остаточной). Число степеней'свободы равно:
для общей вариации
для межгрупповой вариации ;
для внутригрупповой вариации
Как и суммы квадратов отклонений, числа степеней свободы связаны между собой равенством:
или
п - 1 = (m - 1) + (п - т). (7.42)
Деление сумм квадратов отклонений на соответствующее число степеней свободы дает три оценки генеральной дисперсии s2 .
,
, (7.43)
.
Поскольку Dфакт измеряет вариацию результативного признака, связанную с изменением фактора, по которому произведена группировка, a Dост - вариацию, связанную с изменением всех прочих факторов, сравнение этих величин, рассчитанных на одну степень свободы, дает возможность оценить существенность влияния признака-фактора на результативный признак с помощью F-критерия:
.
Эта запись предполагает, что s2факт > s2ост. Как правило, мы получаем именно такое соотношение. Если F факт > Fтабл (a., d.f.1, d.f.2), можно утверждать, что нуль-гипотеза не соответствует фактическим данным, влияние признака-фактора является существенным или, иначе говоря, статистически значимым.
Рассмотренные этапы однофакторного дисперсионного анализа представлены в табл. 7.9.
Таблица 7.9
Дата добавления: 2015-01-21; просмотров: 919;