Предельные значения показателей вариации объемного признака при разных численностях совокупности

 

Численность совокупностей   Максимальные значения показателей
R ρ α m σ v
2х х̅   х̅  
4х 1,5 х̅   1,5 1,73 х̅   1,73
б 6х 1,67 х̅   1,67 2,24 х̅   2,24
10х 1,80 х̅   1,80 3 х̅   3.00
20x 1,90 х̅   1,90 4,36 х̅   4,36
50х 1,96 х̅   1,96 7 х̅   7,00
100х 1,98 х̅   1,98 9,95 х̅   9,95
2 х̅  

 

Имеет практическое значение и такой показатель, как отношение фактического среднего модуляотклонений к предельно возможному. Так, для совокупности шести предприятий это соотношение составило: 0,47 : 1,67 = 0,281, или 28,1%. Интерпретация полученного показателя такова: для перехода от наблюдаемого распределения объема продукции между предприятиями, к равномерному распределению потребовалось бы перераспределить

, или 23,4% общего объема продукции в совокупности. Если степень фактической концентрации производства (фактическая величина σ или v) составляет некоторую долю предельного значения при монополизации производства на одном предприятии, то отношение фактического показателя к предельному может характеризовать степень концентрации (или монополизации) производства.

Отношения фактических значений показателей вариации или изменения структуры к предельно возможным используются также при анализе структурных сдвигов (см. главу 11).

 

 

Рекомендуемая литература к главе 5

 

1. Джини К. Средние величины. - М.: Статистика, 1970.

2. Кривенкова Л. Н., Юзбашев М. М. Область существования показателей вариации и ее применение // Вестник статистики. - 1991. - №6. - С. 66-70.

3. Пасхавер И. С. Средние величины в статистике. - М.: Статистика. 1979.

4. Шураков В. В., Дайитбегов Д. М. и др. Автоматизированное рабочее место статистической обработки данных (Глава 4. Предварительная статистическая обработка данных). - М.: Финансы и статистика, 1990.

 








Дата добавления: 2015-01-21; просмотров: 868;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.