Источники сварочного тока

 

Источники тока для питания сварочной дуги должны иметь специальную внеш­нюю характеристику. Внешней ха­рактеристикой источника называет­ся зависимость напряжения на его выход­ных клеммах от тока в электрической це­пи.

Внешние характеристики могут быть следующих основных видов:

- падающая 1,

- пологопадающая 2,

- жесткая 3,

- возрастаю­щая 4 (рис. 13.4, а).

Источник тока выби­рают в зависимости от вольт-амперной характеристики дуги, соответствующей принятому способу сварки.

Для питания дуги на участке II с жест­кой характеристикой применяют источни­ки с падающей или пологопадающей ха­рактеристикой (ручная дуговая сварка, автоматическая под флюсом, сварка в за­щитных газах неплавящимся электродом).

Режим горения дуги определяется точкой пересечения характеристик дуги б и ис­точника тока I (рис. 13.4, б).

Точка В соот­ветствует режиму неустойчивого горения дуги, точка С – режиму устойчивого горе­ния дуги ( ), точка А – режиму холо­стого хода в работе источника тока в пе­риод, когда дуга не горит и сварочная цепь разомкнута.

 

Рис. 13.4 – Внешние характери­стики источников сварочного тока (а) и соотношение ха­рактеристик дуги и падаю­щей характеристики источ­ника тока при сварке (б)

 

Режим холостого хода характеризуется повышенным напряжени­ем (60 ... 80 В).

Точка D соответствует режиму короткого замыкания при зажига­нии дуги и ее замыкании каплями жидкого электродного металла. Короткое замыка­ние характеризуется малым напряжением, стремящимся к нулю, и повышенным, но ограниченным током.

Источники сварочного тока с падаю­щей характеристикой необходимы для облегчения зажигания дуги за счет повы­шенного напряжения холостого хода, обеспечения устойчивого горения дуги и практически постоянной проплавляющей способности дуги, а также для ограниче­ния тока короткого замыкания, чтобы не допустить перегрева токопроводящих проводов и источников тока.

Наилучшим образом приведенным требованиям удов­летворяет источник тока с идеализирован­ной внешней характеристикой 5 (рис. 13.4).

Для обеспечения устойчивости горения дуги на участке III с возрастающей харак­теристикой применяют источники свароч­ного тока с жесткой или возрастающей внешней характеристиками (сварка в за­щитных газах плавящимся электродом и автоматическая под флюсом током повы­шенной плотности).

Для питания сварочной дуги применя­ют источники переменного тока (свароч­ные трансформаторы) и источники посто­янного тока (сварочные выпрямители и генераторы).

Сварочные трансформаторы преобра­зуют сетевое напряжение (220 или 380 В) в пониженное (меньше 140 В), необходи­мое для сварки. Особенность конструкции сварочных трансформаторов заключается в том, что они имеют повышенное рассея­ние магнитного потока. Это обусловлива­ет их высокое индуктивное сопротивле­ние, что обеспечивает круто падающую внешнюю характеристику тока в свароч­ной сети.

Предусмотрено регулирование степени магнитного рассеяния путем вве­дения внутрь магнитного сердечника трансформатора дополнительного шунта или изменения расстояния между первич­ной и вторичной обмотками.

Таким обра­зом изменяют крутизну внешней характе­ристики и, соответственно, величину сва­рочного тока, при относительно постоян­ном напряжении на дуге.

В массовом порядке выпускают только однопостовые трансформаторы, предна­значенные для ручной дуговой сварки покрытыми электродами и механизирован­ной сварки под флюсом.

В состав серийных выпрямителей вхо­дят понижающий трансформатор с регули­руемым магнитным рассеянием и выпря­мительный блок, собранный по мостовой схеме с использованием кремниевых сило­вых вентилей. Эти выпрямители, так же как и трансформаторы, предназначены для ручной дуговой сварки электродами и ме­ханизированной сварки под флюсом.

Широкое применение получили уни­версальные выпрямители, состоящие из трансформатора с нормальным магнитным рассеянием и управляемого тиристорного выпрямителя.

Выпрямители могут иметь различные виды внешних характеристик благодаря введению в транзисторный блок обратных связей по сварочному току. От­рицательная обратная связь обеспечивает крутопадаюшую характеристику, положи­тельная – жесткую. Универсальные вы­прямители кроме ручной сварки и сварки под флюсом применяют для механизиро­ванной сварки в защитных газах.

Наиболее совершенны инверторные выпрямители.

Особенностью их является то, что сетевое напряжение преобразу­ется в высокочастотное (до 60 кГц), с по­мощью управляемого транзисторного ин­вертора, далее высокочастотное напряже­ние понижается малогабаритным транс­форматором, выпрямляется блоком сило­вых вентилей и подается на дугу в виде сглаженного сварочного напряжения. Ин­верторные выпрямители могут иметь лю­бую форму внешней характеристики, в том числе близкую к идеализированной (рис. 13.4, а).

Одним из преимуществ инверторных выпрямителей является их ма­лая масса – примерно в 10 раз меньше, чем выпрямителей других типов.

Особые технологические свойства имеют импульсные источники сварочного тока, разработанные на основе универ­сальных и инверторных выпрямителей.

Специальные блоки управления работой тиристоров и транзисторов позволяют по­лучить ток в виде импульсов различной формы (прямоугольных, экспоненциаль­ных) с разными временами и периодами следования импульсов. Главное достоинст­во импульсных источников тока заключа­ется в существенном снижении тепловложения при сварке, что позволяет сваривать металл малой толщины без опасности про­жога и недопустимого разбрызгивания.

Источники переменного тока более распространены, так как обладают рядом технико-экономических преимуществ. Сварочные трансформаторы проще в экс­плуатации, значительно долговечнее и обладают более высоким КПД, чем вы­прямители и генераторы постоянного то­ка. Однако в некоторых случаях (сварка на малых токах покрытыми электродами и под флюсом) при питании переменным током дуга горит неустойчиво, так как через каждые 0,01 с напряжение и ток ду­ги проходят через нулевые значения, что приводит к временной деионизации дуги.

Постоянный ток предпочтителен в техно­логическом отношении: при его примене­нии повышается устойчивость горения ду­ги, улучшаются условия сварки в различ­ных пространственных положениях, появ­ляется возможность вести сварку на пря­мой и обратной полярностях и т.д. Послед­няя вследствие большего тепловыделения в анодной области дуги позволяет проводить сварку сварочными материалами с туго­плавкими покрытиями и флюсами.

Подводимая к свариваемому изделию теплота характеризуется величиной теп­ловой мощности дуги.

Полная тепловая мощность сварочной дуги, Дж/с:

 

; (13.2)

 

где – коэффициент несинусоидальности напряжения и тока (для постоянного тока равен 1, для переменного тока 0,7 ... 0,97).

Однако не вся мощность дуги полно­стью расходуется на нагрев и расплавле­ние электрода и основного металла, – часть ее теряется в результате теплоотдачи в окружающую среду. Часть мощности дуги, вводимая в свариваемую заготовку (нагрев дугой, с каплями электродного металла), называется эффективной теп­ловой мощностью сварочной дуги, Дж/с:

 

; (13.3)

 

где – КПД дуги, представляющий собой отношение эффективной мощности дуги к полной; значение зависит от способа сварки, вида и состава сварочных мате­риалов (для автоматической сварки под флюсом, электрошлаковой, ручной дуго­вой покрытым электродом и сварки в за­щитных газах среднее значение соответст­венно равно 0,9; 0,7; 0,8 и 0,6).

Для оценки затрат тепловой энергии на образование единицы длины шва или еди­ницы площади соединения при однопро­ходной сварке используют величины по­гонной , удельной погонной энергии ( – скорость сварки, см/с; – толщина заготовки, см).

 

 








Дата добавления: 2015-03-26; просмотров: 2035;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.