Переход от изображений к оригиналам
Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами:
1. Посредством обратного преобразования Лапласа
,
которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как:
.
На практике этот способ применяется редко.
2. По таблицам соответствия между оригиналами и изображениями
В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала.
Например, для изображения тока в цепи на рис. 5 можно записать
.
Тогда в соответствии с данными табл. 1
,
что соответствует известному результату.
3. С использованием формулы разложения
Пусть изображение искомой переменной определяется отношением двух полиномов
,
где .
Это выражение может быть представлено в виде суммы простых дробей
, | (3) |
где - к-й корень уравнения .
Для определения коэффициентов умножим левую и правую части соотношения (3) на ( ):
.
При
.
Рассматривая полученную неопределенность типа по правилу Лапиталя, запишем
.
Таким образом,
.
Поскольку отношение есть постоянный коэффициент, то учитывая, что , окончательно получаем
. | (4) |
Соотношение (4) представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е. , то уравнение (4) сводится к виду
.
В заключение раздела отметим, что для нахождения начального и конечного значений оригинала можно использовать предельные соотношения
которые также могут служить для оценки правильности полученного изображения.
Контрольные вопросы
- В чем заключается сущность расчета переходных процессов операторным методом?
- Что такое операторная схема замещения?
- Как при расчете операторным методом учитываются ненулевые независимые начальные условия?
- Какими способами на практике осуществляется переход от изображения к оригиналу?
- Для чего используются предельные соотношения?
- Как связаны изображение и оригинал в формуле разложения? Какие имеются варианты ее написания?
- С использованием теоремы об активном двухполюснике записать операторное изображение для тока через катушку индуктивности в цепи на рис. 6.
Ответ: .
- С использованием предельных соотношений и решения предыдущей задачи найти начальное и конечное значения тока в ветви с индуктивным элементом.
Дата добавления: 2015-03-26; просмотров: 646;