Клеточное деление. Задачей этого раздела не является изложение основ генетики
Задачей этого раздела не является изложение основ генетики. Мы опишем лишь морфологические проявления деления клеток.
Необходимо отметить, что биологический смысл клеточного деления сводится к воспроизведению дочерней клетки, идентичной материнской. В генетическом плане суть деления сводится к тому, что материнская клетка, обладающая определенным набором хромосом (23 пары хромосом у человека), первоначально удваивает генетический материал, и только затем происходит разделение клетки. При этом генетический материал равномерно распределяется между двумя идентичными в геноти-пическом плане клетками. Это свойство клеток является не только основой возникновения, развития организма, но и поддержания его целостности на протяжении всей жизни. Огромное значение деление клеток имеет и при регенерации поврежденных тканей.
Наиболее распространенной формой самовоспроизведения клетки является митоз, на морфологических проявлениях которого мы и остановимся несколько ниже. Первоначально необ-
Клетка
ходимо охарактеризовать стадию, предшествующую митозу, а именно интерфазу (рис. 1.1.31, 1.1.32).
D
Рис. 1.1.31. Клеточный цикл:
14 |
G,, G2 и G,, — периоды интерфазы; М — митоз; D — гибель клетки
Рис. 1.1.32. Фазы митотического деления (по А. Хэм, Д.Кормак, 1982):
а — интерфаза (G2); 6—профаза; в — метафаза; г — анафаза; д — телофаза; е — интерфаза (G,) (/ — ядрышко; 2— центрио-ли; 3—веретено деления; 4—звезда; 5—ядерная оболочка; 6—кинетохор; 7 — непрерывные микротрубочки; 8 — s-хромо-сома; 9 — d-хромосома; 10— хромосомные микротрубочки; // — формирование ядра; 12— борозда дробления; 13 — пучок актино-вых нитей; 14 — остаточное (срединное) тельце)
Интерфаза характеризуется наличием последовательных структурных и биохимических преобразований, подготавливающих клетку к митозу. Весьма важным в интерфазе является матричный синтез ДНК и удвоение хромосом — S-фаза. Промежуток времени между де-
лением и наступлением S-фазы называется фазой G, (постмитотическая или постсинтетическая фаза), а между S-фазой и митозом — фазой G2 (постсинтетическая или предмитотическая фаза). В течение фазы G, клетка диплоидная, в течение фазы S плоидность возрастает до четырех. Таким образом, в фазе G9 клетка уже тетраплоидная.
В интерфазе усиливаются биосинтетические процессы. Удваивается масса клетки, происходит деление центриолей. В течение предмитоти-ческой фазы (G2) обе материнские центриоли осуществляют сборку микротрубочек, усиливается формирование лизосом, делятся митохондрии и синтезируются новые белки, необходимые для осуществления митоза. К концу интерфазы хроматин конденсирован, ядрышко хорошо видно, ядерная оболочка не нарушена.
Наиболее важным и сложным процессом, происходящим в интерфазе, является удвоение набора хромосом. Суть удвоения состоит в том, что на цепочке ДНК синтезируется точно такая же параллельная цепочка. Этот процесс называется репликацией. Биологическая суть репликации сводится к тому, что при этом происходит передача генетической информации, хранящейся в родительской ДНК, путем точного ее воспроизведения в дочерней клетке. При этом каждая родительская цепь ДНК является матрицей для синтеза дочерней (матричный синтез ДНК). Процесс репликации довольно сложен.
Рис. 1.1.33. Микроскопия фаз митоза на примере клеток бластулы (по Copenhaver, 1971):
а — поздняя профаза; б — метафаза; в — раняя анафаза; г — телофаза
Глава 1. КЛЕТКА И ТКАНИ
Подробное описание этого процесса можно найти в многочисленных руководствах по генетике.
В конце интерфазы клетка практически подготовлена к митотическому делению, которое в последующем и наступает. Морфологически различают 4 фазы митоза: профаза, метафаза, анафаза и телофаза (рис. 1.1.32, 1.1.33).
Профаза характеризуется тем, что в этот период происходят интенсивные изменения структуры ядра. На участках эухроматина прекращается транскрипция. Они покрываются белками и становятся неотличимыми от зерен гетерохроматина. Затем наступает спирализа-ция хромосом. При этом хромосома становится видимой в световом микроскопе. Вышеуказанный процесс сопровождается исчезновением ядрышка. Таким образом, в начале профазы в ядре образуется плотный клубок, который к концу фазы разрыхляется, и становятся видимыми хромосомы.
Именно в этой фазе центриоли расходятся к противоположным полюсам клетки, формируется веретено, состоящее из микротрубочек.
Метафаза (следует за профазой). В мета-фазе основные изменения происходят в цитоплазме клетки. Лизосомальные ферменты растворяют ядерную оболочку, и спирализованные хромосомы оказываются в цитоплазме. Комплекс Гольджи и эндоплазматический ретикулум распадаются на мелкие фрагменты.
На каждом центромере выявляется скопление специальных белков — кинетохор. Сборка микротрубочек на материнских центриолях продолжается. В результате этого процесса формируется биполярное митотическое веретено, состоящее из микротрубочек и ассоциированных с ними белков. Различают несколько видов микротрубочек. Часть микротрубочек расходится от центриоли во все стороны. Часть их образует астральную лучистость. Другая их часть направлена к экватору клетки — полярные микротрубочки. Кроме астральных и полярных микротрубочек от полюсов отходят ки-нетохорные микротрубочки, т. е. те, которые в области экватора прикрепляются к кинетохо-рам хромосом. В клетках человека каждый кинетохор связан с 20—40 микротрубочками.
Этап формирования веретена обозначают как прометафазу. В ходе собственно метафазы хромосомы перемещаются и располагаются в одной плоскости перпендикулярно к оси между полюсами. Образуется фигура, называемая материнской звездой. В результате упорядочения положения хромосом система микротрубочек также упорядочивается. Они теперь образуют веретено деления (митотическое веретено).
Важно отметить, что именно в метафазе определяют кариотип. У человека в норме ка-риотип характеризуется наличием 23 пар хромосом, приведенных на рис. 1.1.34. В метафазе изучают кариотип с диагностической целью при
•1 mm U lift |
Ну
ДНК |
fl/7 П
й | in | К II | и | ii 5& | |||
X | 7 8 | И 12 | |||||
пл | Аи | Л6 | га | АЛ | |||
19 20 | |||||||
л | А А | ||||||
Y |
ДНК
Рис. 1.1.34. Кариотип человека и уровни упаковки хроматина в ядре:
а — классификация пар хромосом человека; б — молекулярная организация хромосом (по В. Л. Быкову. 1999) двойная спираль ДНК образует нить диаметром 2 нм, которая намотана на блоки дисковндшш фирмы — нуклеосомы (/), входящие в состав нук-леосомнои пиiи (2) диаметром 11 нм Скрученная нуклеосомнля нить образует хроматиновую фибриллу (3) диаметром 30 нм, которая формирует петельные домены (4) диаметром 300 нм. Более и.ютно упакованные петельные до.мены образуют конденсированные участки хромосомы (5) диаметром 700 нм, являющими ч.н тью метафазной хромосомы (б) размером около 1400 нм
различных врожденных и наследуемых заболеваниях.
Анафаза. Анафаза довольно сложный в химическом отношении процесс. В начале анафазы наступает внезапное разделение центромеры d-хромосомы, в результате чего сестринские хроматиды становятся самостоятельными s-xpo-мосомами.
Микротрубочки начинают укорачиваться, в результате чего хроматиды подтягиваются к центриолям. Сами центриоли удаляются друг от друга в сторону полюсов клетки, в результате чего образуются две дочерние звезды. В конце анафазы плазматическая мембрана как бы инвагинируется перпендикулярно к продольной оси митотического веретена, образуя борозду. В этой области под плазмолеммой появляется сократительное кольцо, состоящее из
Клетка
a U |
актин- и миозинсодержащих нитей. Завершает деление телофаза.
Телофаза. Как указано выше, к концу анафазы и началу телофазы в середине клетки образуется цитоплазматическая перетяжка, которая постепенно углубляется и, в конце концов, полностью разделяет клетку на две равные части, содержащие идентичный набор хромосом. После этого вновь появляется ядро, а хромосомы «распадаются» с образованием глыбок хроматина. Примерно в середине телофазы начинается образование нитчатой, а затем гранулярной частей нуклеонеммы. К концу телофазы полностью сформировано ядрышко. Из мембранных пузырьков происходит формирование аппарата Гольджи, эндоплазматической сети. На этом митотический цикл завершается, и клетка входит в интерфазу.
Вышеприведенные данные характеризуют основной тип клеточного деления — митоз. Но существуют и другие типы деления. Это эндомитоз. Морфологически при эндомитозе удвоение числа хромосом происходит внутри ядерной оболочки без ее разрушения и формирования веретена деления. При повторных эндомитозах число хромосом в ядре может значительно увеличиваться и развивается так называемая полиплоидия. Сопровождается этот процесс значительным увеличением объема ядра. Полиплоидия сопровождается значительным увеличением функциональной активности клеток. Полиплоидия характерна как в норме, так и при различных патологических состояниях эндотелия роговой оболочки.
Полиплоидия развивается и при митоти-ческом делении, при котором не происходит цитотомии. При последующем делении такой двуядерной клетки хромосомные наборы ядер объединяются в метафазе, приводя к образованию двух дочерних полиплоидных клеток. Наличие полиплоидных клеток (тетра-, окта- и т.д.) является нормальным состоянием ряда тканей организма человека.
Большое биологическое значение имеет еще один тип деления — мейоз, в результате которого формируются половые клетки. Основной смысл мейоза сводится к делению, при котором достигается уменьшение количества хромосом в клетке в два раза. Обсуждение этого типа деления выходит за рамки данной книги. Более подробные сведения можно получить в большом количестве руководств по цитологии.
В литературе описан еще один тип деления — амитоз. До сих пор обсуждаются вопросы возможности существования подобного типа деления. Считают, что при таком делении исчезает биологический смысл деления, т. е. возможность равного распределения генетического материала в двух вновь образованных клетках. Тем не менее морфологи, особенно патологи, довольно часто наблюдают прямое (амитотичес-кое) деление.
1.1.5. Межклеточные соединения
Межклеточное пространство.Между цито-плазматическими мембранами соседних клеток обнаруживается равномерное светлое пространство шириной 15 нм. Это пространство нередко расширяется или сужается как в норме, так и при патологических состояниях. Несмотря на наличие межклеточного пространства, клетки довольно сильно сцеплены между собой при помощи специализированных органоидов различного типа (рис. 1.1.35). На особенностях строения этих органоидов мы и остановимся ниже.
Рис. 1 1.35. Cxi'Mii гическое изображение межклеточных контактов различного типа (по tiogan et al., 1972):
ii.iuiiii.h- кл-динеиие; 2 — :ич мосома; 3—ще.к-вой контакт I 'м .-I viz)); б — запмр.иощая зона [cmpt'-thu)
Десмосома(macula adhearens). Рядом расположенные клетки могут соединяться между собой при помощи локальных уплотнений — десмисим (рис. 1.1.36). Этот тип органоидов относится к адгезивным (контакты типа пятна слипания). При формировании подобного типа контакта цитоплазматические мембраны соседних клеток не сливаются, а как бы «прилипают» благодаря наличию межклеточного вещества. Особенно выражен подобный тип межклеточных контактов в эпителиальных тканях (эпидермис, эпителий роговицы, нейроэпите-лиальные структуры).
Глава 1. КЛЕТКА И ТКАНИ
границе со стромой) обнаруживаются не десмосомы, а полудесмосомы (рис. 1.1.37). По строению полудесмосома представляет собой как бы половинку десмосомы. Полудесмосома образована лишь одной пластинкой с входящими в нее тонофиламентами, которые прикрепляют клетку к базальной мембране. Подобные образования в большом количестве можно обнаружить в переднем и заднем эпителии роговой оболочки.
Рис. 1.1.36. Десмосомы:
а — светооптическая микроскопия плоскостного препарата однослойного плоского эпителия (между клетками видны десмосомы в виде мостиков); б—ультраструктурные особенности десмосом
Десмосомы настолько сильно связывают клетки между собой, что их можно разделить только механически. Даже при образовании эпителиальных пузырей на поверхности роговой оболочки (буллезная кератопатия), т.е. отслоения эпителиального пласта от подлежащей стромы, эпителиальный пласт долго сохраняет свою структуру именно благодаря десмосомам.
При ультраструктурном исследовании десмосомы представляют собой противостоящие дисковидные уплотнения мембран клеток (пластинка прикрепления). Диаметр этих пластинок около 0,5 мкм, а толщина 15 нм. Между ними определяется светлое межклеточное пространство (ширина 30 нм), выполненное «цементной» субстанцией умеренной электронноплот-ности в виде полоски. В межклеточном материале десмосомы определяются трансмембранные Са2+ связывающие адгезивные белки (десмо-коллины, десмоглеины), которые, взаимодействуя с белками пластинок прикрепления, связывают их в единую систему. В центре межклеточной щели видно линейное уплотнение (центральная или промежуточная линия). Радиаль-но от участков уплотнения распространяются внутрицитоплазматические промежуточные фи-ламенты, состоящие из особых белков, — дес-моплакины, плакоглобин и десмокальмин.
При контакте эпителиальной клетки с межклеточным материалом (базальная мембрана на
Рис. 1.1.37. Ультраструктурная организация полудесмосомы и базальной мембраны:
/ — полудесмосома; 2 — промежуточные филамеиты; 3 — плаз-молемма; 4 — якорные фибриллы; 5 — базальная мембрана
Промежуточное соединение,или опоясывающая десмосома (zonula adherens — поясок сцепления).
Подобного типа соединения обнаруживаются чаще всего на боковой поверхности эпителиальных клеток между областью расположения плотного соединения и десмосом. Это соединение охватывает клетку по периметру в виде пояска. В области промежуточного соединения обращенные к цитоплазме листки плазмолеммы утолщены и образуют пластинки прикрепления, которые содержат актин-связывающие белки альфа-актин, винкулин и плакоглобин. К этим пластинкам прикрепляются актиновые мико-филаменты, вплетающиеся также в терминальную сеть. Межклеточная щель расширена до 15—20 нм и заполнена умеренно электронно-плотным веществом, состоящим из адгезивного трансмембранного гликопротеина (Е-кадгерин) (рис. 1.1.38).
Плотное соединение(zonula occludens — поясок замыкания).
Этот тип контактов относится к так называемым плотным контактам. В контактах подобного рода цитоплазматические мембраны соседних клеток как бы сливаются. При этом образуется исключительно плотная стыковка клеток (рис. 1.1.39). Такие контакты наиболее часто встречаются в тканях, в которых необходимо полностью предотвратить проникновение метаболитов между клетками (эпителий кишеч-
Клетка
Рис. 1.1.38. Промежуточное соединение:
/ — цитоплазматические мембраны соседних клеток; 2 — микро-филаменты
Рис. 1.1.39. Юнкциональный комплекс эпителиальных клеток:
/ — актиновые филаменты микроворсинок; 2 — цитоплазмати-ческая пластинка десмосомы; 3 — межклеточное пространство; 4 — промежуточные филаменты; 5 — десмосома (macula adherens); 6 — микроворсинка; 7 — полирибосомы; 8 — поясок сцепления (zonula adherens); 9 — плотное соединение (zonula occludens)
ника, эндотелий роговой оболочки). Как правило, соединения этого типа располагаются на апикальной поверхности клетки, опоясывая ее. Поясок замыкания представляет собой область частичного слияния наружных листков плазмолемм двух соседних клеток. Плотное соединение имеет вид пояска шириной 0,1 — 0,5 мкм, окружающего клетку по периметру и состоящего из анастомозирующих тяжей внут-римембранных частиц. Эти частицы образованы белком окклюдином. Каждая из них представляет собой область точечного слияния плазмолемм двух соседних клеток. Проницаемость плотных соединений тем ниже, чем выше число
тяжей этих частиц. Эти образования могут динамично перестраиваться и временно размыкаться.
В литературе нередко используется термин «юнкциональный комплекс». При этом авторы используют этот термин, описывая сложные межклеточные соединения, включающие одновременно типичные десмосомы, зону замыкания и ленту замыкания (fascia occludens) (рис. 1.1.39). Последний тип контакта отличается от зоны замыкания лишь тем, что контакт не полностью опоясывает клетку, а местами прерывается.
Щелевидное соединение(nexus). Щелевид-ное соединение характеризуется тем, что между цитоплазматическими мембранами соседних клеток видна щель шириной в 2 нм. При этом обе плазмолеммы соседних клеток соединены между собой коннексонами — полыми гексагональными белковыми структурами размерами около 9 нм, каждая из которых образована шестью белковыми субъединицами (рис. 1.1.40). Число коннексонов в щелевом соединении обычно исчисляется сотнями. Через эти образования осуществляется перенос метаболитов из одной клетки в другую. При этом молекулярный вес этих веществ не превышает 1500 Да (неорганические ионы, сахара, витамины, аминокислоты, нуклеотиды, АТФ и др.). Эти соединения обеспечивают между клетками ионное и метаболическое сопряжение. Близкое строение имеют синапсы.
Рис. 1.1.40. Схематическое изображение щелевидного соединения:
/—цитоплазматические мембраны соседних клеток; 2—кон-несоны
Щелевидные контакты играют важную роль в осуществлении функций клеток, особенно обладающих выраженной электрической активностью. По этой причине неудивительно, что большое количество подобных контактов обнаруживается между нейронами сетчатой оболочки (см. Сетчатка). Широко распространены они также в сердечной мышце и ткани центральной нервной системы.
Глава 1. КЛЕТКА И ТКАНИ
Интердигитации(пальцевые соединения). Интердигитации представляют собой межклеточные соединения, образованные выпячиваниями цитоплазмы одних клеток, вдающимися в цитоплазму других (рис. 1.1.41). Между плаз-молеммами соседних клеток всегда остается |
Рис. 1.2.1. Коллагеновые волокна: а — плотная волокнистая ткань (виден пучок коллагеновых волокон (/) и фиброциты (2))\ б — ориентированные параллельно пучки коллагеновых волокон (сканирующая электронная микроскопия) |
Рис. 1.1.41. Интердигитации соседних эпителиальных клеток:
а — трансмиссионная электронная микроскопия (/ — интердигитации; 2 — митохондрии; 3 — десмосомы); б—метод замораживания-скалывания (сканирующая электронная микроскопия)
межклеточная щель 15—20 нм. За счет интердигитации увеличивается прочность межклеточного сцепления и увеличивается поверхность контакта между клетками.
1.2. МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО
Комплексы клеток вместе с межклеточным веществом образуют ткань. Межклеточное вещество состоит из волокон (коллагеновые, ретикулиновые, эластические), основного вещества. Некоторые авторы к нему также относят кристаллический материал и базальные мембраны.
Дата добавления: 2015-03-26; просмотров: 1322;