Интерфазное ядро
Все клетки содержат ядра, форма и размеры которых могут быть самыми разнообразными. В настоящем разделе мы остановимся на морфологии интерфазного ядра, т. е. ядра, находящегося вне митотического цикла. В тканях подавляющее большинство ядер находится в интерфазе.
В ядре четко выявляются следующие структуры (рис. 1.1.27):
1. Ядерная оболочка.
2. Хроматин.
3. Ядрышко.
4. Ядерный сок.
Рис. 1.1.27. Ультраструктурные особенности лимфоцита периферической крови. Четко определяется структура ядра:
/ — эухроматин; 2— гетерохроматин; 3 — митохондрии; 4 — ядро; 5 — ядрышко; 6 — ядерная оболочка; 7 — ядерная пора; 8 — плазмолемма; 9 — перинуклеарное пространство; 10— псевдоподии; // — полирибосомы; 12 — шероховатый эндоплазмати-ческий ретикулум
Ядерная оболочка (кариолемма).Ядерная оболочка окружает ядро и хорошо видна в препаратах. Это связано с тем, что с внутренней стороны к ней прилежит хроматин, интенсивно окрашивающийся гематоксилином. Окрашенный хроматин и контурирует оболочку.
При исследовании в электронном микроскопе оболочка выглядит в виде двух темных мембран, между которыми определяется светлое пространство толщиной 25 нм. Толщина каждой электронноплотной мембраны 8 нм.
В ядерной мембране определяются многочисленные «поры» (рис. 1.1.28). Ядерные поры занимают от 3 до 35% всей поверхности ядра. Именно в этих местах два электронноплотных слоя оболочки как бы сливаются. В области пор обнаруживается скопление хроматина. Ультраструктурные исследования выявили, что в области пор располагаются и довольно сложные структуры, состоящие из канальцев, обращенных как в сторону цитоплазмы, так и внутрь ядра. Этот комплекс структур называют паровым комплексом (рис. 1.1.29). Поровый комплекс содержит два параллельных кольца (по одному с каждой поверхности кариолеммы) диаметром 80 нм, которые образованы 8 белковыми гранулами. От этих гранул к центру сходятся фибриллы, формирующие перегородку (диафрагму) толщиной 5 нм. В середине этой мембраны лежит центральная гранула, которая представляет собой субъединицу рибосомы. Поры способствуют обмену метаболитов между ядром и цитоплазмой. Основной функцией ядерных пор является обеспечение регуляции
Клетка
Рис. 1.1.28. Ультраструктурные особенности (а) и схематическое изображение (б) строения поры ядерной оболочки:
/ — пора; 2 — ядро; 3 — цитоплазма клетки; 4 — внутренняя мембрана ядерной оболочки; 5 — наружная мембрана ядерной
оболочки; 6 — гранулярный эндоплазматический ретикулум
Рис. 1.1.29. Поры ядерной оболочки:
а — сканирующая электронная микроскопия (стрелкой указан комплекс ядерной поры); 6—ядерные поры при применении метода
замораживания-скалывания; в — схема организации комплекса ядерной поры (/ — наружная мембрана кариолеммы; 2— внутренняя
мембрана кариолеммы; 3— белковые гранулы; 4 — белковые фибриллы; 5 — центральная гранула)
избирательного транспорта веществ между цитоплазмой и ядром, активный перенос в ядро белков, перенос в цитоплазму субъединиц рибосом.
Хроматин при световой микроскопии выглядит в виде глыбок различной степени дисперсности, равномерно или неравномерно распределенных в кариоплазме (рис. 1.1.30). Отмечается его большая конденсация вблизи ядерной мембраны (периферический хроматин) и вблизи ядрышка (околоядрышковыи хроматин). Описанный тип хроматина называется конденсированным, поскольку он виден при световой микроскопии. Но кроме конденсированно-
го гетерохроматина в кариоплазме существует и неконденсированный хроматин, или эухро-матин.
В химическом отношении хроматин представляет собой комплекс ДНК и белка. Этот комплекс соответствует хромосомам, которые в интерфазном ядре представлены длинными, тонкими перекрученными нитями. Они неразличимы как индивидуальные структуры.
Транскрипция информации с молекул ДНК осуществляется только с молекул эухроматина.
Морфологической разновидностью гетерохроматина является тельце Барра, обычно расположенное вблизи ядерной оболочки. Обнару-
Глава 1. КЛЕТКА И ТКАНИ
Рис. 1.1.30. Ультраструктурная организация ядра:
а — схема структурных компонентов ядра (/ — ядрышко; 2— эухроматин; 3— гетерохроматин; 4 — ядерная пора; 5 — карио-лемма; 6 — цистерна шероховатой эндоплазматической сети); б, в — особенности строения ядрышка (/—темный компонент; 2— светлый компонент)
живаются тельца только у женщин, поскольку представляют собой одну из конденсированных Х-хромосом.
Функция реализации генетической информации в интерфазном ядре осуществляется непрерывно благодаря процессам транскрипции. При транскрипции ДНК образуется одна очень крупная молекула РНК (первичный транскрипт), которая связывается с ядерными белками с образованием рибонуклеопротеидов. В первичном РНК-транскрипте (как и в матричной ДНК) имеются дискретные значащие последовательности нуклеотидов (экзоны), разделенные длинными вставками (нитронами). Про-цессинг РНК-транскрипта включает отщепление интронов и стыковку экзонов — сплайсинг. При этом очень крупная молекула РНК превращается в достаточно мелкие молекулы информационной РНК, отделяющиеся от связанных с ними белков при переносе в цитоплазму.
Ядрышко (рис. 1.1.30). Ядрышко представляет собой расположенное в ядре плотное образование. Размеры, плотность, форма и локализация ядрышек могут быть самыми разнообразными. Отмечено, что более интенсивна синтетическая деятельность клетки при больших размерах ядрышка. Да это и понятно, поскольку ядрышко обеспечивает синтез РНК-
Ультраструктурные исследования позволили выявить довольно сложную структуру ядрышка. В нем различают гранулярный, фибриллярный и аморфный компоненты.
Гранулярный компонент представлен зернами (диаметр 10—20 нм), состоящими из ри-бонуклеопротеидных частиц (субъединицы рибосом). Фибриллярная часть состоит из плотных тонких электронноплотных нитей (диаметр 5—8 нм), образующих компактную массу. Эти волокна концентрируются вокруг более светлых сердцевин из менее плотного материала (фибриллярные центры). Считается, что фибриллярный материал представляет собой РНК (рибосомальная РНК), а фибриллярные центры состоят из ДНК и по строению соответствуют зернам хроматина.
Аморфный компонент окрашивается бледно и содержит участки расположения ядрышковых организаторов со специфическими РНК-связы-вающими белками и крупными петлями ДНК, активно участвующими в транскрипции рибосо-мальной РНК-Фибриллярный и гранулярный компоненты образуют ядрышковую нить (нуклеонему), толщина которой 60—80 нм.
Ядерный сок (кариоплазма). Ядерный сок представляет коллоидный раствор белка, в котором и располагаются перечисленные структуры. Ядерный сок не окрашивается ядерными красителями.
Основными функциями ядра является хранение генетической информации (в молекулах ДНК, находящихся в хромосомах), реализации генетической информации, контролирующей осуществление различных жизненных функций клетки, воспроизведение и передачу генетической информации. Последняя функция осуществляется благодаря клеточному делению.
Дата добавления: 2015-03-26; просмотров: 1561;