Клеточные механизмы сердечного сокращения

 

Миокард состоит из отдельных поперечнополосатых мышечных клеток (волокон), диаметр которых в норме составлят 10—15 мкм, а длина — 30—60 мкм (рис. 181-1, а). Каждое волокно включает в себя множество пересекающихся и соединенных между собой нитей (миофибрилл), которые идут на всем протя­жении волокна и в свою очередь состоят из периодически повторяющихся струк­тур — саркомеров. В цитоплазме между миофибриллами располагаются одно центрально расположенное ядро, многочисленные митохондрии и внутриклеточ­ные системы мембран.

Каждый саркомер, являющийся структурной и функциональной едини­цей сокращений, ограничен с двух сторон темными линиями, так называемыми Z-линиями (см. рис. 181-1). Расстояние между Z-линиями зависит от степени сокращения или растяжения мышц и варьирует от 1,6 до 2,2 мкм. Внутри саркомера можно видеть чередующиеся светлые и темные полосы, придающие волок­нам миокарда характерный исчерченный вид. В центре саркомера расположена широкая темная полоса постоянной ширины (1,5 мкм) — А-полоса, с двух сторон ее окружают две более светлые I-полосы, ширина которых может меняться. Саркомер сердечной мышцы, так же как и скелетной, построен из миофиламентов двух типов. Более толстые филаменты, состоящие главным образом из белка миозина, идут в продольном направлении и ограничиваются А-полосами. Их диаметр около 100 А, длина— 1,5—1,6 мкм; к периферии они сужаются. Тонкие филаменты состоят прежде всего из актина. Они протянуты между Z-линиями и проходят через I-и А-полосы Диаметр их составляет приблизительно 50 А, длина 1,0 мкм. Таким образом, толстые и тонкие филаменты накладываются друг на друга только в пределах полос А, полосы I содержат исключительно тонкие фи­ламенты (см. рис. 181-1). При электронной микроскопии можно обнаружить, что между толстыми и тонкими филаментами, проходящими в полосе А, тянутся поперечные мостики.

 

 

Процесс сокращения. «Скользящая» модель мышечного сокраще­ния основана на фундаментальном положении о том, что длина как толстых, так и тонких филаментов остается постоянной и в покое, и во время сокращения. При активации саркомера нити актина и миозина начинают взаимодействовать между собой на уровне соединяющих мостиков, в результате чего нити актина продвигаются глубже внутрь полосы А. В течение всего сокращения ширина полосы А остается постоянной, в то время как полоса I становится уже, а ли­нии Z двигаются по направлению друг к другу.

Молекула миозина представляет собой сложный, асимметричный волокнис­тый белок с мол. массой около 500000. Она состоит из части, похожей на удочку, длина которой составляет 1500 А, и глобулярной части, расположенной на ее конце. Эта глобулярная часть миозина обладает аденозинтрифосфатной (АТФ-азной) активностью и также участвует в образовании мостиков между миозином и актином. Удлиненная часть молекулы миозина формирует толстый миофиламент. Она располагается строго в одну линию с такими же частями других мо­лекул миозина, и они все ориентированы в одном направлении. При этом глобу­лярная часть молекулы отклоняется в сторону, так что получает возможность взаимодействовать с актином, генерируя энергию и вызывая сокращение (рис. 181-2, а). Мол. масса актина 47000. Тонкие филаменты состоят из двойных спи­ралей, формируя две цепи молекул актина, переплетенных между собой и тесно связанных с регуляторными белками — тропомиозином и тропонином (см. рис. 181-2,6). Последний может быть разделен на три компонента: тропонины С, I и Т (см. рис. 181-2, в). В отличие от миозина актин не обладает существенной энзиматической активностью, однако он.способен обратимо связываться с мио­зином в присутствии АТФ и ионов магния, которые активируют АТФ-азу миозина. В расслабленной мышце это взаимодействие подавляется тропомиозином. Во время активации ионы кальция присоединяются к тропонину С, что приводит к конформационным изменениям, в результате которых связывающие мостики актина перемещаются кнаружи и становятся доступными для взаимодействия. Физические изменения в связывающих мостиках вызывают скольжение актина вдоль нитей миозина, что неизбежно приводит к укорочению мышцы или разви­тию напряжения. Расщепление АТФ сопровождается диссоциацией соединяю­щих мостиков между миозином и актином. Образование и разрыв связей между нитями актина и миозина происходят циклично в соответствии с колебаниями концентрации ионов Са. Связи нарушаются, когда концентрация ионов Са сни­жается ниже критического уровня, а комплекс тропонин — тропомиозин предот­вращает взаимодействия между соединительными мостиками миозина и нитями актина. Ионизированный кальций служит основным медиатором, регулирующим инотропное состояние сердца. Большинство препаратов, усиливающих инотропную функцию миокарда, включая сердечные гликозиды и катехоламины, опосредуют свое действие через повышение доставки ионов кальция к миофиламентам.

Саркоплазматическая сеть (см. рис. 181-1,6) представляет собой сложную цепь соединенных между собой мембранных внутриклеточных каналов, обволакивающую миофибриллы. Однако в клетках сердечной мышцы саркоплазматическая сеть менее развита, чем в клетках скелетных мышц. Она состоит из множества продольно расположенных переплетенных между собой мембранных канальцев, тесно прилегающих к поверхности каждого саркомера. Саркоплазматическая сеть не имеет непосредственного продолжения за грани­цами клетки. С саркоплазматической сетью тесно, как функционально, так и структурально, связана система поперечных канальцев, или Т-система, образо­ванная каналоподобными выпячиваниями сарколеммы, которые проникают внутрь миокардиального волокна вдоль Z-линий, т. е. концевых частей саркомеров.

Активация клеток миокарда. В покое клетка миокарда поляри­зована. т. е. внутренняя поверхность мембраны имеет отрицательный заряд по отношению к наружной поверхности. При этом трансмембранный потенциал со­ставляет от —80 до --100 мВ (гл. 183). Главную роль в создании этого потен­циала покоя играет сарколемма, которая в состоянии покоя практически непро­ницаема для ионов Na и имеет натрий-калийзависимый насос, изгоняющий ионы Na из клетки. Для работы этого насоса требуется аденозинтрифосфат (АТФ). Таким образом, внутри клетки накапливается относительно большое количество ионов К и значительно меньше ионов Na, в то время как внеклеточная среда богата ионами Nа и бедна ионами К. В свою очередь в состоянии покоя количе­ство ионов Са вне клетки значительно превышает содержание свободных ионов Са внутри нее.

 

 

Рис.181-2. Схематически показано взаимодействие сократительных белков, а также роль кальция как активирующего посредника. а — показано относительное расположение сократительных (миозина и актина) и регуляторных белков (тропонинового комплекса и тропомиозина) в миофиламенте; б — сокращение происходит, когда головки молекул миозина, образующие поперечные мостики толстых нитей, связываются с актином. Затем меняется ориентация поперечных мостиков, что приводит к смещению тонких нитей но направлению к центру саркомера. Для активации необходимо связывание ионов Са с тропониновым комплексом, в результате чего снимается тормозящее влияние связи миозина и актина. Одной из серий химических реакций, лежащих в основе мышечного сокращения, является гидролиз АТФ, вызывающий смещение поперечных мостиков. Релаксация наступает после того, как ионы Са2+ отщепляются от тропонина; в — молекулярная перестройка на уровне тонких нитей затрагивает регуляторные белки (тропомиозин и гропонины С, I и Т) и заключается в их аллостерических изменениях. Связываясь с тропонином С, кальций ослабляет связь между тропонином I и актином. Развивающаяся диссоциация тропо­нина Т и актиновоп основы тонких нитей приводит к смещению тропомиозина таким образом, что его активные участки становятся доступными для взаимодействия с миозином. С разрешения: А. М. Katz, V. Е. Smith. Hosp. Proc., 1984, 19 (1), 69. |

 

 

Во время плато потенциала действия (фаза 2) отмечается медленный ток электрических зарядов внутрь клетки. Он прежде всего обусловлен движением ионов Са (рис. 181-3), хотя абсолютные количества .этого иона, пересекающие поверхностную мембрану, относительно малы и сами по себе не могут вызвать полноценную активацию контрактильного аппарата. Деполяризующий ток заря­дов распространяется не только по поверхности клетки, но и проникает глубоко в нее, что обеспечивается разветвленной Т-системой. Следствием транссарколеммального движения ионов Са является высвобождение значительно больших его количеств из саркоплазматической сети. Этот процесс получил название «реге­неративного высвобождения» ионов Са.

Ионы Са диффундируют по направлению к саркомеру и, как было описано выше, связываются с тропонином, блокируя этот ингибитор сокращения, и акти­вируют миофиламенты, вызывая сокращение. Затем ионы Са вновь накаплива­ются в саркоплазматической сети, что, естественно, влечет снижение концентра­ции этого иона в миофибриллах до уровня, при котором взаимодействие актина и миозина между собой, лежащее в основе сокращения, становится невозмож­ным. Таким образом происходит расслабление мышцы. Очевидно, что в основе периодически сменяющихся сокращений и расслаблении сердечной мышцы лежит способность клеточной мембраны, поперечных канальцев и саркоплазматической сети распространять в пространстве потенциал действия, высвобождать и вновь накапливать ионы Са.

Основным источником энергии, обеспечивающей практически всю механиче­скую работу по сокращению клеток миокарда, служит АТФ, образующийся при субстратном окислении. Запасы высокоэнергетических фосфатов равномерно распределяются между АТФ и креатинфосфатом. Активность миозин-АТФазы определяет скорость образования и распада соединенных мостиков между акти­ном и миозином, а следовательно, и скорость сокращения мышцы.

Значение длины мышцы. Сила сокращения поперечнополосатой мышцы любого типа, включая и сердечную мышцу, зависит от ее исходной длины. Наиболее мощное сокращение саркомера наблюдают при длине 2,2 мкм. Именно при такой длине саркомера расположение обоих видов миофиламентов по отно­шению друг к другу наиболее благоприятно для их взаимодействия. Фактом, подтверждающим гипотезу скольжения миофиламентов, является уменьшение создаваемой силы прямо пропорционально уменьшению площади соприкоснове­ния толстых и тонких нитей, а следовательно, и количеству реактивных участков. Имеются данные о том, что длина саркомера определяет также степень актив­ности контрактильной системы, т. е. степень ее чувствительности к ионам Са. Максимальная активность установлена при длине саркомера 2,2 мкм. Если длина саркомера увеличивается до 3,65 мкм, то создаваемое напряжение падает до нуля, а тонкие нити полностью выходят за пределы А-полосы. С другой стороны, если длина саркомера менее 2,0 мкм, то происходит скручивание тонких нитей и их двойной перегиб. Одновременно снижается чувствительность контрактильных локусов к ионам Са, а следовательно, и сила сокращения.

Зависимость развиваемой силы сокращения от исходной длины мышечных волокон является решающим фактором, определяющим функцию сердечной мышцы. Она лежит в основе правила Франка — Старлинга (закона сердца Старлинга), которое утверждает, что в определенных границах увеличение ис­ходного объема желудочка, являющегося производным от длины мышцы, при­водит к усилению сокращения желудочка. Было установлено, что в сердечной мышце длина саркомера прямо пропорциональна длине мышцы. Эта зависимость соответствует восходящему колену кривой «длина — активное напряжение мыш­цы». По мере уменьшения длины мышцы до того момента, когда создаваемое напряжение приближается к нулю, а длина саркомера — к 1,5 мкм, I-полосы сначала сужаются, а затем и вовсе исчезают, в то время как ширина А-полос остается постоянной. В этот момент Z-линии упираются в края А-полос. Таким образом, кривая зависимости силы активного напряжения мышцы от длины саркомера отражает ультраструктурный механизм Старлинга для мышцы сердца.

 

 

Рис.181-3. Схема движения ионов кальция. Кальциевые токи, активирующие мышечное сокращение, направлены вниз, вызывающие расслабление мышц — вверх. Как видно, в покое кальциевые каналы мембран сарко­леммы клеток сердечной мышцы закрыты, а внутриклеточный кальций находится в саркоплазматической сети. При возбуждении и деполяризации мембраны натриевые каналы (не показаны), чувствительные к изменению электрического напряжения, и кальциевые каналы сарколеммы открываются, обусловливая быстрое поступление в клетку внекле­точного натрия и кальция. В настоящее время считается, что вхождение ионов Са в клетку извне вызывает его высвобождение из саркоплазматической сети, что и индуцирует сокращение. Необходимым условием расслабления сердечной мышцы явля­ется повторный захват кальция АТФ-зависимым кальциевым насосом, расположенным в саркоплазматической сети. Важно то, что сокращение активируется главным образом пассивным током ионов Са из саркоплазматической сети. Напротив, во время диастолы кальций должен активно выкачиваться из цитозоля, обеспечивая возможность релакса­ции. Во время диастолы также затрачивается энергия на восстановление градиентов концентраций натрия и кальция по обе стороны сарколеммы, что необходимо для обеспечения деполяризующих ионных токов, участвующих в генерации потенциала действия. Транспорт ионов Na осуществляется сарколеммальным натриевым насосом (натрия-калиевая АТФаза), использующим энергию АТФ для выкачивания натрия из клетки в обмен на калий. Образующийся в результате градиент концентрации натрия и является основным фактором, обеспечивающим активный транспорт ионов Са из клет­ки во время релаксации посредством натрий-кальциевого обмена. [С разрешения из: А. М, Katz, V. Е. Smith. — Hosp. Ргос., 1984, 19 (1), 69.]

 

 








Дата добавления: 2015-03-17; просмотров: 701;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.