Тема. 6. Явление электромагнитной индукции. Закон Фарадея
Явление возникновения электрического тока в замкнутом проводящем контуре в результате изменения магнитного потока, пронизывающего этот контур, называется явлением электромагнитной индукции. Возникновение индукционного электрического тока в контуре указывает на наличие в этом контуре электродвижущей силы, называемойэлектродвижущей силой (ЭДС) электромагнитной индукции.
Согласно закону Фарадея, величина ЭДС электромагнитной индукции определяется только скоростью изменения магнитного потока, пронизывающего проводящий контур, а именно:
величина ЭДС электромагнитной индукции прямо пропорциональна скорости изменения магнитного потока, пронизывающего проводящий контур:
(закон Фарадея).
Направление индукционного тока в контуре определяется по правилу Ленца: индукционный ток в контуре всегда имеет такое направление, что создаваемое этим током магнитное поле препятствует изменению магнитного потока, вызвавшему этот индукционный ток.
Закон Фарадея с учетом правила Ленца можно сформулировать следующим образом: величина ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром, то есть:
(закон Фарадея с учетом правила Ленца).
Тема 7. Циркуляция вектора магнитной индукции
Циркуляцией вектора магнитной индукции по произвольному замкнутому контуру L называется интеграл:
.
Для того, чтобы найти циркуляцию вектора магнитной индукции по произвольному замкнутому контуру L, необходимо выбрать направление обхода контура, разбить этот контур L на элементы , для каждого элемента рассчитать величину (a – угол между векторами и ), а затем все эти величины сложить, что приводит к искомому интегралу.
Однако циркуляцию вектора по произвольному замкнутому контуру L можно рассчитать, используятеорему о циркуляции вектора .
Теорема о циркуляции вектора : циркуляция вектора по произвольному замкнутому контуру L равна произведению магнитной постоянной m0 на алгебраическую сумму токов, охватываемых этим контуром L:
,
где n – число проводников с токами, охватываемых контуром L. Положительным считается ток, направление которого образует с направлением обхода по контуру правовинтовую систему; ток противоположного направления считается отрицательным.
Величина , где a – угол между векторами и может быть записана в виде скалярного произведения векторов и , то есть, как , а полученное соотношение для циркуляции вектора примет вид:
.
Магнитное поле претерпевает изменения при переходе из одного вещества в другое, что определяется магнитными свойствами вещества, которые характеризуются величиной магнитной проницаемости среды ( m ).
Кроме вектораиндукции магнитного поля, учитывающего магнитные свойства вещества, для описания магнитного поля введен также и векторнапряженности магнитного поля, причем для однородной изотропной среды вектор магнитной индукции связан с вектором напряженности магнитного поля следующим соотношением:
,
где m0 – магнитная постоянная, m – магнитная проницаемость среды.
Поскольку для вакуума m = 1 , то с учетом приведенного соотношения может быть получена циркуляция вектора напряженности по произвольному замкнутому контуру L в следующем виде:
,
то есть циркуляция вектора по произвольному замкнутому контуру L равна алгебраической сумме токов, охватываемых этим контуром L.
Сравнивая векторные характеристики электростатического ( и ) и магнитного ( и ) полей, следует отметить, что аналогом вектора напряженности электростатического поля является вектор магнитной индукции , так как векторы и определяют силовые действия этих полей и зависят от свойств среды, а аналогом вектора электрического смещения является вектор напряженности магнитного поля.
Дата добавления: 2014-12-12; просмотров: 753;